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Abstract

In the dynamic and high-stakes world of sports betting, effective predictive modeling and bankroll manage-
ment are crucial for maximizing returns while mitigating risks. This report presents the development and
implementation of a comprehensive system designed to optimize sports betting strategies, with a focus on
football matches. The system is grounded in a theoretical framework that models the interactions between
two agents—the bettor and the bookmaker—where, at each time t, the bettor allocates a fraction of their
bankroll across possible outcomes, and the bookmaker sets the odds for each outcome. To manage the com-
plexities inherent in dynamic betting environments, we simplify the problem by transitioning from a dynamic
optimization framework to a static one, allowing for tractable solutions and efficient computations.

Leveraging predictive models, including logistic regression, and utility-based optimization techniques such
as the Kelly Criterion, the system aims to forecast match outcomes probabilites accurately and allocate
betting capital efficiently. The architecture integrates data collection from various sources, predictive mod-
eling, optimization algorithms, and deployment on a cloud-based infrastructure using Kubernetes on Azure.
Through both Monte Carlo simulations and real-world online testing over a five-week period, the strategies
were evaluated for performance and robustness.

The results demonstrate that sophisticated utility-based strategies significantly outperform naive betting
approaches, achieving higher returns and better risk management. The transition to a static framework
enables the effective application of these strategies in a practical setting. The deployment of the system
on Azure Kubernetes Service (AKS) ensures scalability, reliability, and the ability to handle real-time data
processing demands. Limitations and future enhancements are discussed, including the incorporation of
more complex models and dynamic risk preferences. This work contributes to the field of sports analytics by
providing a practical framework for optimized betting strategies in a real-world environment, grounded in a
solid theoretical foundation.
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Chapter 1

Introduction

Sports betting has evolved into a sophisticated industry that combines statistical analysis, predictive mod-
eling, and strategic financial management [1]. With the global popularity of football and the abundance of
data available, there is a significant opportunity to apply advanced analytical techniques to optimize betting
strategies. The challenge lies in accurately predicting match outcomes and effectively managing the allocation
of betting capital to maximize returns while minimizing risk.

This report presents the development and implementation of a comprehensive system designed to address
these challenges in sports betting. The system integrates predictive modeling to forecast football match
outcomes and optimization algorithms to determine the optimal allocation of a bettor’s bankroll. The focus
is on creating a practical, scalable solution that can operate in real-time, leveraging cloud-based technologies
and microservices architecture.

1.1 Background and Motivation

The sports betting market is highly competitive, with bettors seeking any edge to improve their chances of
success. Traditional betting strategies often rely on intuition or simplistic models that fail to account for
the complexities of sports data and market dynamics. The advancement of machine learning and statistical
methods offers the potential to enhance predictive accuracy and optimize betting decisions systematically
[7].

Effective bankroll management is equally important, as even accurate predictions can lead to losses if
the betting amounts are not strategically allocated. The application of utility theory and optimization
techniques, such as the Kelly Criterion, provides a mathematical framework for balancing risk and reward in
betting decisions.

1.2 Objectives of the Study

The primary objectives of this study are:

e To establish a rigorous mathematical framework that defines the theoretical foundations and sets the
stage for the study.

e To develop a predictive model that accurately estimates the probabilities of football match outcomes
using historical and real-time data.

e To design an optimization module that calculates the optimal fraction of the bankroll to wager on each
betting opportunity, applying various utility-based strategies.

e To implement a scalable, microservices-based system architecture that integrates data collection, pre-
dictive modeling, optimization, and user interface components.

e To deploy the system on a cloud platform using Kubernetes for scalability and reliability.

e To evaluate the performance of different betting strategies through Monte Carlo simulations and real-
world online testing.



1.3

Scope of the Report

This report details the theoretical framework underlying the predictive modeling and optimization strategies,
the system architecture and implementation, and the results of both simulated and real-world testing. The
report is organized as follows:

Chapter 2 provides a theoretical presentation of the models and preliminary research conducted.

Chapter 3 describes the design and implementation of the solution, including system architecture and
data management.

Chapter 4 focuses on the development, training, and evaluation of the predictive models for match
outcomes.

Chapter 5 discusses the optimization of bankroll allocation using various strategies.

Chapter 6 details the deployment of the complete system on Azure Kubernetes Service and the practical
considerations involved.

Chapter 7 presents the conclusions drawn from the study and discusses potential future work.

1.4 Significance of the Study

By integrating advanced predictive modeling with optimized bankroll allocation, this work aims to contribute
to the field of sports analytics and betting strategies. The deployment of the system on a scalable cloud
infrastructure demonstrates its practical applicability and readiness for real-world use. The findings from
this study have implications for bettors seeking to enhance their strategies, as well as for researchers interested
in the application of machine learning and optimization techniques in sports betting.



Chapter 2

Theoretical presentation and
preliminary research

2.1 Introduction

In this section, we introduce a mathematical framework that describes the sports betting market. We
model the interactions between bettors and bookmakers, considering key elements such as match outcomes,
associated probabilities, odds, and bankroll dynamics. Bettors aim to maximize their utility by placing bets
based on their estimated probabilities of match outcomes, while bookmakers strategically set odds to manage
risk and ensure profitability. This agent-based framework enables a systematic analysis of decision-making
processes in sports betting, balancing risk and reward. The complete list of notations can be found here A.

2.2 Mathematical Formalization of Sports Betting

2.2.1 Matches and Outcomes

At any given time t € R™, we define the set of matches available for betting as:

M(t) = {m',m?, ... mM®»}

where M (t) € N represents the total number of matches available at time t.
For each match m* € M(t), there is a set of possible outcomes:

OF = {wf,wlg,...,wjk\,k}

where N* € N represents the number of possible outcomes for match m*.

Example: In a football match, possible outcomes might be chosen as {home team wins, draw, away team
wins}, so N¥ = 3 Vk.

2.2.2 Probabilities of Outcomes
k

We define Py (wf) as the probability that outcome w; occurs for match mP, given the state of the world YV

at time ¢:

k k
ri (t) = Py (w;)
These probabilities may change over time as new information becomes available.

We introduce the random variable X associated with outcome w:

, if outcome w¥ occurs,

Xk =
! 0, otherwise.



Therefore, 7¥(t) = Py (XF = 1).

K2

Example: Consider a football match m* between Team A and Team B. The possible outcomes w¥ are:

wh = Team A wins, w} = Draw, w§ = Team B wins.

At time ¢, based on current information Y (such as form, injuries, and past results), the probabilities of
these outcomes are:

7 (t) = Py(Team A wins), r5(t) = Py(Draw), 75(t) =Py (Team B wins).

For example, if r¥(t) = 0.55, it means there is a 55% chance that Team A will win.

2.2.3 Bettors and Bookmakers

Let J be the set of bettors, and B be the set of bookmakers.
Each bettor J € J has a bankroll at time ¢, denoted by:

Bgettor (t)

Similarly, each bookmaker B € B has a bankroll at time ¢, denoted by:

Bl?ookmaker (t)

2.2.4 0Odds

At time ¢, bookmaker B offers odds on the outcomes of matches. For match m”*, the odds offered by
bookmaker B are:

OF(B,t) = {2 (1), 057 (#),..., ol (1)}

where of’B(t) represents the odds offered on outcome w! of match m* at time ¢.

Example: Consider the same football match m”* between Team A and Team B. At time ¢, bookmaker B
offers the following odds:

0*(B,t) = {2.00,3.50,4.00}

Where of5(t) = 2.00 for Team A to win, o5"”(t) = 3.50 for a draw, and o5"?(t) = 4.00 for Team B to win.
These odds represent the potential payouts for each outcome.

2.2.5 Bets and Wagers

At time t, bettor J may choose to place bets on various outcomes. We define:
. fik"](t): The fraction of bettor J’s bankroll B,  (t) that is wagered on outcome wf of match m*.
. bf"](t): The bookmaker B with whom bettor J places the bet on outcome w¥ of match m*.

Therefore, the amount wagered by bettor J on outcome w¥ at time ¢ is:

wf’J(t) = ff’J(t) X Bgettor(t)



Example: Consider bettor J with a bankroll of B{ . (t) = 100 units at time ¢. Bettor J decides to wager:

%7(1) = 0.2 (20% of the bankroll on Team A to win)

Thus, the amount wagered is:

w7 () = 0.2 x 100 = 20 units
Bettor J places the 20-unit bet with bookmaker B.

2.2.6 Bankroll Evolution

The evolution of the bettors’ and bookmakers’ bankrolls depends on the outcomes of the matches and the
settlement of bets.

Bettor’s Bankroll Evolution

The bankroll of bettor J at time ¢ is given by:

t
Bgettor (t) = BbJettor(O) + /0 Z Ggettor(b) dT
beB

etttea (T)

where:
o BZ 1.q(s) is the set of bets placed by bettor .J that are settled at time s.
o G/ ..., (b) is the gain or loss from bet b, calculated as:
Giettor(b) = w” (b) x (07 (b) x X (b) — 1)

— w’(b) is the amount wagered on bet b.
— 08(b) is the odds offered by bookmaker B for bet b.
— X (b) indicates whether the bet was successful (X (b) = 1) or not (X (b) = 0).

Example: Consider bettor J starts with a bankroll of B/ (0) = 100 units. At time ¢, the bettor places
a bet of w’(b) = 20 units on a match with odds o?(b) = 2.50 offered by bookmaker B.
If the outcome X (b) = 1 (the bettor wins the bet), the gain from the bet is:

Gl oiror(B) = 20 x (2.50 x 1 — 1) = 30 units
Thus, the updated bankroll at time ¢, is:

By ior(t1) = 100 + 30 = 130 units

If the bettor loses another bet at time to with a wager of 30 units on odds of 3.00, then X (b) = 0 and the
loss is:

G tior(b) = 30 x (3.00 x 0 — 1) = —30 units
The bankroll at time ¢5 becomes:

Byl ior(t2) = 130 — 30 = 100 units



Bookmaker’s Bankroll Evolution

Similarly, the bankroll of bookmaker B at time ¢ is given by:

B _ npB
Bbookmaker (t) - Bbookmaker / Gbookmaker (b) dr
0

Jes beBscttlcd (r)

where:
e 7 is the set of all bettors {J1, Ja, ..., JJy} placing bets with bookmaker B.

° l’j’hettle 4(s) is the set of bets accepted by bookmaker B from bettor J that are settled at time s.

) Gbookmaker(b) is the gain or loss from bet b, which now takes into account multiple bettors J, calculated
as:

Gbookmaker(b) = wJ(b) X (1 - OB(b) X X(b))
where:

— w’(b) is the amount wagered by bettor J on bet b.
— 08(b) is the odds offered by bookmaker B for bet b.
— X(b) indicates whether the bet was successful (X (b) = 1) or not (X (b) = 0).

Impact of Multiple Bettors

For each bet b, the gain or loss for bookmaker B depends on which bettor placed the bet. If bettor J wins,
bookmaker B pays out, and if bettor J loses, bookmaker B gains:

GbBookmaker(b) = _Ggettor(b)

Thus, for each bet placed by a bettor J, the bookmaker’s gain is equal to the bettor’s loss, and vice versa.
With multiple bettors, the bookmaker’s bankroll reflects the combined gains and losses from all bets settled
across the bettors Jy, Ja, ..., Jn.

2.2.7 Bankroll Factor

To abstract from the initial bankroll amounts, we can define the Bankroll Factor for bettors and bookmakers.

Bettor’s Bankroll Factor
The bankroll factor for bettor J at time t is defined as:

BJe or()
BFI;]ettor() m

This represents the growth of the bettor’s bankroll relative to their initial bankroll.

Bookmaker’s Bankroll Factor

Similarly, the bankroll factor for bookmaker B at time ¢ is:

BBoo ma cr(t)
BFbBookmaker (t) = B% knal 0
bookmaker( )



2.2.8 (Gain Calculation

The cumulative gain for bettor J up to time ¢ is:

Ggettor(t) = Bgettor(t) - Bgettor(o) = Bgettor(o) (BFB]ettor (t) - 1)
Similarly, for bookmaker B:

Gfookmaker(t) = Bl?ookmaker(t) - BbBookmaker(O) = Bl?ookmaker(o) (BFbBookmaker (t) - 1)

2.2.9 Utility Function

The utility function U represents the agent’s preferences regarding risk and reward, crucial in decision-making
under uncertainty [17]. Bettors and bookmakers use this function to optimize their gains over time while
minimizing risk. Unlike expected returns, utility functions incorporate risk preferences, allowing agents to
balance the trade-off between potential gains and variability [20] [2] [23].

Forms of Utility Functions

Different utility functions capture varying risk attitudes, ranging from risk-neutral to risk-averse behaviors.

Below are the common types of utility functions in the betting market:

1. Expected Value Utility (Risk-Neutral) The simplest form, where utility is directly proportional to
wealth:

U(B)=B
Agents using this function are risk-neutral, focusing solely on maximizing expected returns without con-

sidering risk.

2. Logarithmic Utility (Moderate Risk Aversion) Logarithmic utility models constant relative risk
aversion (CRRA) and is expressed as:

U(B) = In(B)

This function reflects diminishing marginal utility of wealth, balancing risk and reward, commonly used in
the Kelly Criterion [18] [25] for long-term growth.

3. Power Utility (CRRA) A generalization of logarithmic utility, with risk aversion controlled by ~:

B
it v#1

Higher ~ values indicate greater risk aversion. When v = 1, the function becomes logarithmic.

U(B)

4. Exponential Utility (Constant Absolute Risk Aversion - CARA) The exponential utility models
constant absolute risk aversion (CARA):
U(B) = —e 8
Here, « controls risk aversion. Agents using this function maintain consistent risk preferences regardless of
wealth level.
5. Quadratic Utility Quadratic utility is given by:

mm:BfgW

Though it captures increasing risk aversion, it has the drawback of implying decreasing utility at higher
wealth levels, making it less commonly used.



Implications of Different Utility Functions

Each utility function models specific risk preferences, influencing the agent’s decisions:

Risk-Neutral Behavior Agents with linear utility (U(B) = B) focus solely on maximizing returns, indif-
ferent to risk. This behavior is rare in practice due to the inherent risks in betting.

Risk-Averse Behavior Utility functions like logarithmic, power, and exponential represent risk-averse
behavior:

e Logarithmic Utility: Moderate risk aversion, favoring long-term growth.
e Power Utility (CRRA): Flexibility in modeling different degrees of risk aversion via +.

e Exponential Utility (CARA): Constant risk aversion regardless of wealth.

Risk-Seeking Behavior Agents may occasionally exhibit risk-seeking behavior, favoring higher variance.
This is typically modeled by utility functions with convex regions or negative coefficients but is unsustainable
in the long term.

Choosing an Appropriate Utility Function
Selecting the right utility function depends on:
e Risk Preference: It should reflect the agent’s risk tolerance.
e Mathematical Tractability: Functions like logarithmic utility offer simpler analytical solutions.

e Realism: The chosen function should realistically model the agent’s behavior in the market.

2.3 General Agent-Based Betting Framework

In order to model the decision-making processes of bettors and bookmakers in sports betting, we adopt a
general agent-based framework [11]. This framework allows us to formalize the interactions between agents
(bettors and bookmakers) and the environment (the sports betting market) in a comprehensive and systematic
manner. By defining the state space, action space, and other essential components in the most general terms,
we can capture the complexity of sports betting and lay the groundwork for more specific analyses.

2.3.1 Agents in the Betting Market

There are two primary types of agents in the sports betting market:

e Bettors (Players): Individuals or entities who place bets on the outcomes of sporting events with
the aim of maximizing their returns.

e Bookmakers: Organizations or individuals who offer betting opportunities by setting odds on the
possible outcomes of sporting events, aiming to maximize their profits.

Each agent operates based on their own objectives, information, and strategies, interacting with the envi-
ronment and other agents through their actions.



2.3.2 State Space

At any given time ¢t € RT, the state of the sports betting environment, denoted by S(¢), encompasses all the
information relevant to the agents’ decision-making processes. The state space S is the set of all possible
states S(t).
The state S(t) can be defined as:
S(t) = (M(t), Q(t)7 @(t), Bbettor (t)y Bbookmaker (t), H(t), I(t))
where:
e M(¢): The set of all matches available at time ¢.
e Q(t): The set of possible outcomes for each match in M(t).
e O(t): The set of odds offered by bookmakers for each possible outcome at time ¢.
® Bypettor(t): The set of bettors’ bankrolls at time ¢.
® Bpookmaker(t): The set of bookmakers’ bankrolls at time ¢.

e H(t): The history of past events up to time ¢, including past bets, match results, and odds movements.

e 7(t): Any additional information available to the agents at time ¢, such as team news, player injuries,
weather conditions, etc.

The state S(t) encapsulates all the variables that can influence the agents’ decisions, making it comprehen-
sive and general.

2.3.3 Action Space

At each time ¢, agents choose actions from their respective action spaces:

Bettors’ Action Space

The action space for a bettor J at time ¢, denoted by Aﬂettor(t), consists of all possible betting decisions they
can make. An action A (t) € A{ ... (t) can be defined as:

Agettor(t) = (fzk) | fzk € [07 1],Zflk <=1

ik
where:

k

i -

e fF: The fraction of the bettor’s bankroll B, () to wager on outcome w

Hence, the bettor chose the outcomes to bet on by assigning 0 (no bet) or more to an outcome at a given
time t.
Bookmakers’ Action Space

The action space for a bookmaker B at time ¢, denoted by AE . (t), can be simplified to the selection

of odds for each outcome. An action AZ . (t) € AB , . (t)is defined as:

AbBookmaker(t) = {@k(B7t) = {O’]LC | 0? € [1’ OO)}

where:
e 0f: The odds set by the bookmaker B for outcome w¥ of match m* at time t.

If of = 1, the bookmaker does not offer bets on outcome wf. If all odds of = 1 for a match m*, the
bookmaker does not offer that match for betting.



Example: At time ¢, bettor J allocates fractions of their 100 unit bankroll across two matches, with three

possible outcomes:
f 03 02 0
- \05 0 0
The bookmaker sets the following odds for each outcome:

/250 3.00 4.00
°=11.80 290 3.50

This means bettor J wagers 30 units on wi (Team A wins m?), 20 units on wi (draw in m!), and 50 units
on w? (Team A wins m?).

2.3.4 Transition Dynamics

The state transitions %it) are governed by the interactions between the agents’ actions and the environment.

The transition dynamics can be described in general terms:

) — @ (51(0), Avesor ). Aot (0). (1)
where:
e & is the state transition function.
e Apettor(t): The set of all bettors’ actions at time ¢.
o Apookmaker(t): The set of all bookmakers’ actions at time ¢.

e ¢(t): Represents the stochastic elements inherent in sports outcomes and market dynamics, modeled as
random variables.

The transition function ® captures how the state evolves due to:

e The resolution of matches (outcomes becoming known), represented by changes in outcome variables
over time..

e The settlement of bets (adjustment of bettors’ and bookmakers’ bankrolls).
e Changes in available matches and odds for the next time period.

e Updates to the history H(t) and information set Z(¢), represented by %gt) and %(tt).

2.3.5 Policies

Each agent follows a policy that guides their decision-making process:

Bettors’ Policy

A bettor’s policy Wgettor is a mapping from states to actions:

J . J
Thettor - S— Abettor

The policy determines how the bettor decides on which bets to place and how much to wager, based on
the current state S(t).
Bookmakers’ Policy
A bookmaker’s policy 72, is a mapping from states to actions:

B . B
Thookmaker * S— Abookmakcr

The policy dictates how the bookmaker sets odds and offers betting opportunities, considering factors like
market demand, risk management, and competitive positioning.
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2.3.6 Objectives and Constraints

Each agent aims to optimize an objective function over time, such as maximizing expected utility or profit,
subject to specific constraints that reflect their operational limitations and risk management considerations.
Bettors’ Objective

The bettor seeks to maximize a chosen utility over a time horizon 7"

max K (U7 (BFoor(T))]

Thettor

Constraints for the Bettor
The bettor’s optimization problem is subject to the following mathematical constraints:

e 1. Budget Constraint at Each Time ¢:

The total fraction of the bankroll wagered on all outcomes cannot exceed 1 at any time ¢:

M(t) N

Y. st v

k=1 i=1
where:

— f57 () is the fraction of the bettor J’s bankroll BF/.,...(t) wagered on outcome i of match k at

7
time t.

— M(t) is the total number of matches available at time ¢.

— NF is the number of possible outcomes for each match k.

e 2. Non-Negativity of Wager Fractions:

The bettor cannot wager negative fractions of the bankroll:

M) >0 ikt

K3

Bookmakers’ Objective

The bookmaker aims to maximize a chosen utility over a time horizon T

max E [UB (BF}faokmakEY(T))]

B
Thookmaker

Constraints for the Bookmaker

The bookmaker’s optimization problem is subject to the following mathematical constraints:

e 1. Liquidity Constraint:

The bookmaker must ensure sufficient funds to cover potential payouts:

BEE | aker(t) > Maximum Potential Liability at ¢

This ensures that the bookmaker’s bankroll at time ¢ is greater than or equal to the maximum possible
payout based on the accepted bets.

e 2. Odds Setting Constraints:

The odds must be set to ensure profitability and competitiveness:

11



— Overround Constraint (Bookmaker’s Margin):
For each match k, the sum of the implied probabilities must exceed 1:

k

Z

1
7 0} (t)

Here, €¥(t) > 0 represents the bookmaker’s margin for match k at time .

=1+e"(t) Vk,t

i

— Margin Bound:
To balance profitability and competitiveness, we impose the following bound on ek(t):

€min S Ek(t) S €max Vkvt

This ensures that the margin €¥(t) stays within a specified range, keeping the odds competitive
enough to attract bettors while securing a minimum margin for profitability.

— Competitive Odds Constraint:
The odds of(t) must remain competitive, influenced by market averages or competitors’ odds.
Therefore, the bookmaker may aim to keep €*(t) as low as possible while maintaining profitability
and covering risk.

2.4 Reduction to the Studied Case

Building upon the general agent-based betting framework, we aim to simplify the agent-based betting frame-
work and reduce computational complexity. We transition from a dynamic to a static optimization model
by introducing key assumptions. By assuming immediate resolution of bets and the absence of intertem-
poral dependencies—where current decisions do not influence future opportunities—we make the static and
dynamic problems effectively equivalent for our purposes. This simplification allows us to optimize agents’
decisions at each time step independently, facilitating the derivation of optimal solutions without the need
for complex dynamic programming. However, this reduction comes at a cost, notably in terms of long-term
interpretability, as the model no longer accounts for cumulative effects and evolving dynamics over time.

2.4.1 Hypotheses for the Constrained Problem

1.

No Intertemporal Dependencies (Additive Utility Function): Utility is additive over time,
meaning decisions at time ¢ do not affect future periods. The agent maximizes utility independently at
each step, simplifying the problem into sequential sub-problems.

Reason: This eliminates the need to account for future wealth in current decisions, reducing complexity.

. Discrete Time Steps: Time is divided into discrete intervals where decisions are made periodically.

Bets are resolved by the end of each period before moving to the next. ¢t =0,1,2,...,T

Reason: Discrete time steps reduce the dynamic problem to a series of static decisions, simplifying
optimization.

. Non-Overlapping Bets: Bets are settled within the same period, ensuring that wealth at the end of

each period is fully available for the next, avoiding unresolved wagers impacting future decisions.

Reason: This ensures no carryover of unresolved bets, keeping each period’s wealth independent.

. Independence of Match Outcomes: Match outcomes are independent random events, meaning

there is no correlation between the results of different matches.

Reason: This simplifies probability calculations by eliminating the need to model inter-match depen-
dencies.

. Static Information Environment: Information is fixed within each period. No new data arrives

mid-period, and updates are considered only in the next time step.

Reason: A static environment avoids real-time strategy adjustments, making the problem more man-
ageable.

12



These assumptions significantly simplify the model by reducing the complexity inherent in a dynamic
optimization problem, but they also modify or limit certain long-term interpretations, such as how future
wealth or intertemporal risk is managed across multiple betting periods.

2.4.2 Simplification of the Utility Maximization Problem

With no overlapping bets and a static information environment, agents do not need to consider how current
actions might affect future opportunities or states. This myopic decision-making approach allows agents to
focus solely on the current time period, simplifying their optimization problem to a static one.
Hence, the agents’ objective functions depend only on the current wealth and the outcomes of bets placed
in the current period. The expected utility maximization problem at each time ¢ becomes:
For bettors: ,
{f?l‘?()i)} E [U (Bbettor(t + 1)) ‘ S(t)]
For bookmakers:
max  E[U (Bbookmaker(t + 1)) | S(¢)]
{of ()}
where S(t) is the state at time ¢, which includes the available matches, odds, and the agents’ current
bankrolls.

2.4.3 Dynamic and Total Utility under Assumptions

In our framework, under the assumption of discrete time steps and no intertemporal dependencies, the total
utility across all periods T is given by the sum of the static utilities at each time step:

T
Usotat = »_ U(B(t)).

This assumes that decisions are made independently at each ¢, with the utility depending solely on the
wealth B(t) at that moment. Additive utility functions, such as U(B) = B, respect this assumption directly,
meaning maximizing the utility at each step also maximizes total utility.

However, logarithmic and exponential utilities do not preserve a simple additive structure due to risk
preferences that influence future decisions. While linear utility maintains additivity, U(B) = In(B) and
U(B) = —e~*8 do not.

Utility Functions Respecting Additivity
e Linear utility: U(B) = B

Utility Functions Not Respecting Additivity
Logarithmic utility: U(B) = In(B)

—aB

Exponential utility: U(B) = —e
CRRA: U(B) =B, y+£1

11—~

. 1. . _ )\
Quadratic utility: U(B) = B — 5 B>

Approximation with Additive Properties

By using a first-order Taylor expansion for In(B) or —e~*E, these utilities can become approximately additive.
For small deviations around B, we approximate:
B—B
In(B) ~ In(By) + TO’ —e B —e=Bo | qe=oBo(B — By)
0

These approximations are linear in B, making the utility functions additive for small changes in wealth.
Under these assumptions, the complexity of the problem is reduced, allowing the use of simpler optimization
techniques without fully abandoning the original utility structure.

13



Non-Additive Utility Maximization and Long-Term Interpretation

When maximizing non-additive utility functions (such as logarithmic or exponential) at each step ¢, the
interpretation of utility over the entire period T' changes. Unlike additive functions, where the total utility is
simply the sum of the utilities at each time step, non-additive functions induce a more complex relationship
between short-term and long-term behavior.

For non-additive utilities, maximizing utility at each step does not guarantee maximization of the utility
across the entire period. The decisions made at each step can interact non-linearly across time, meaning that
the long-term growth or risk profile may differ significantly from the one-step behavior. This highlights the
difference between local (step-by-step) optimization and the global impact over the entire period.

Interpretation of Log Utility in Terms of Long-Term Geometric Growth

Maximizing the logarithmic utility at each time step involves maximizing the expected utility:

I?(atg(E []Il Bagent (t + ]') | ‘Ft] ’

where Bagent (t + 1) is the wealth at time ¢t + 1, f(¢) represents the decision variables at time ¢, and F;
denotes the information available at time ¢.
The total utility over T periods is given by:

T T
Uiotal = Z In Bagent (t) =In <H Bagent (t)> .
t=1 t=1

Taking the expectation of the total utility, we have:

T
In (H Bagent(t)ﬂ )
t=1

However, due to the concavity of the logarithm and the properties of expectations, we cannot simplify

]E[Utotal] =E

this expression to In (Hthl E[Bagent(t)]) unless the Bjygent(t) are deterministic. The expected value of the

logarithm of a product of random variables is not equal to the logarithm of the product of their expectations.
To interpret E[Uyotal] in terms of expected wealth and variance, we can use a second-order Taylor expansion
of the logarithm around E[Bgent (t)]:

E[ln Bagent (t)] ~ In E[Bagent (t)] — ;M'

Summing over T periods, we obtain:

E[Utotal] & Y <lnE[Bagem(t)} - ;M) _
t=1 agent

This approximation shows that the expected total utility depends on both the expected wealth and the
variance at each time step. The logarithmic utility function captures the trade-off between expected wealth
growth and risk (variance), penalizing volatility and favoring steady growth.

Over the long term, maximizing the expected logarithmic utility leads to maximizing the expected log-
arithm of cumulative wealth, which corresponds to maximizing the geometric mean return. This
strategy ensures that wealth grows at the highest possible geometric rate, accounting for both returns and
risks.

Long-Term Interpretation of Exponential Utility

For the exponential utility function U(B) = —e~%P, where a > 0 is the coefficient of absolute risk aversion,
the total utility over T periods is:

T

T
Uiotal = »_U(B(t)) = =Y e *P®,
t=1

t=1
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Taking the expectation, we have:

T

EUtora] = — Y E [e=250)]

t=1

We cannot simplify E [e*O‘B (t)] without specifying the distribution of B(t). However, using a second-order
Taylor expansion around E[B(¢)]:

o2
E [e_aB(t)} ~ e OEIBO)] (1 + QVar[B(t)]) :

Therefore, the expected total utility becomes:

T 2
E[Utotal] ~ — Y _ e EIB0) (1 + O;Var[B(t)]) .

t=1

This expression highlights that the expected utility depends heavily on both the expected wealth and the
variance. As « increases, the variance term becomes more significant, reinforcing the agent’s aversion to risk.
The exponential utility function thus focuses on risk minimization and capital preservation over wealth
maximization.

Long-Term Interpretation of Mean-Variance Utility

For the mean-variance utility, which can be associated with a quadratic utility function U(B) = B — 3 B?
for small variations in B, the expected utility at each time step is:

E[U(B(1))] = E[B(#)] - %E[B(t)g]'

Assuming that E[B(t)2] = (E[B(t)])* + Var[B(t)], we have:

E[U(B(1)) = BB~ § (BIB)? +VarB(1).
Over T periods, the expected total utility is:
T
EUrora] = > E[U(B(1))].

Simplifying, we obtain:

d A

Bl = 3 (ELB)] - 5 (EIBOD? + VarlB)]) ).
t=1

This expression demonstrates that the agent considers both the expected wealth and the variance, with the
parameter A\ controlling the trade-off between maximizing returns and minimizing risk.

2.4.4 Simplification of State Transitions

The agents’ state variables, particularly their bankrolls, evolve in a straightforward manner without consid-
ering future uncertainties or pending bets. The bankroll update equations become:

Bbettor (t + 1) = Bbettor(t) + Gbettor (t)

Bbookmaker (t + 1) = Bbookmaker (t) + Gbookmaker (t)

where Gpettor(t) and Gpookmaker (t) Tepresent the gains or losses realized from bets placed and settled within
time ¢.

15



2.4.5 Detailed Simplification of the Bookmaker’s Problem

Similarly, the bookmaker’s optimization problem simplifies under the assumptions:

Objective Function:

max Ubookmaker(t) =E [U (Bbookmaker(t) + Gbookmaker(t)) | S(t)]

{oF ()}
Constraints:
BFE | e (t) > Maximum Potential Liability at ¢
> kl =1+é°(t) forall k,t
i=1 0; (t)
Variables:

e 0oF(t): Odds set for outcome i of match k at time t.

® Ghookmaker(t): Gain or loss from bets, calculated based on the total bets received and payouts made in
the current period.

e (t): Margin for each match at every time step that the bookmaker set to maximise attractiveness,
minimize risque and maximize pay off.

2.4.6 Reasons for the Simplifications

We introduce these simplifications for several important reasons:

Reducing Computational Complexity

Dynamic optimization problems, especially those involving stochastic elements and intertemporal dependen-
cies, can be highly complex and computationally intensive. By simplifying the problem to a static one, we
make it more tractable and amenable to analytical or numerical solutions.

Simplifying the Use of Historical Odds

Solving the general dynamic optimization problem requires a sufficiently large history of odds at each time
step t to ensure convergence towards an optimal solution. This includes tracking all relevant historical data
for each time step and state S. By reducing the problem to a static case, the need for such an extensive
history is eliminated, as the model only relies on current odds. This simplification significantly reduces
computational complexity while maintaining the core of the decision-making process.

Facilitating Analytical Derivations

With the assumptions of immediate bet resolution and independence, we can derive closed-form solutions
or straightforward algorithms for optimal betting strategies, such as the Kelly Criterion for bettors using
logarithmic utility functions.

Focusing on Core Decision-Making Principles

The simplifications allow us to isolate and analyze the fundamental principles of optimal betting and odds
setting without the confounding effects of dynamic interactions. This clarity helps in understanding the key
factors that influence agents’ decisions in the sports betting market.
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2.4.7 Limitations of the Simplified Model

While the simplifications make the model more manageable, they also introduce limitations that should be
acknowledged:

1. Hypothesis: Additive Utility Function with No Intertemporal Dependencies

e Domain of Validity: Valid when agents focus solely on immediate wealth without concern for
future utility.

e Limitation with Reality: Agents usually consider future wealth and utility; this assumption
ignores long-term planning and risk preferences.

e Risk: Ignoring intertemporal effects may result in strategies that maximize short-term gains at
the expense of long-term wealth, increasing the risk of ruin or failing to achieve overall financial
objectives. Among the utility functions described, only U(B) = B is additive with time.

2. Hypothesis: Discrete Time Steps

e Domain of Validity: Applicable when betting decisions are made at fixed, regular intervals.

e Limitation with Reality: Real betting markets operate continuously; opportunities and infor-
mation arise at any time, making this assumption somewhat unrealistic.

e Risk: By assuming discrete time steps, we risk missing profitable opportunities that occur be-
tween intervals and fail to capture the continuous dynamics of the market, leading to suboptimal
strategies.

3. Hypothesis: Non-Overlapping Time Steps

e Domain of Validity: Valid when all bets are short-term and resolved within the same period.

e Limitation with Reality: In practice, many bets span multiple periods, and unresolved bets
can impact future wealth and decisions; this assumption is restrictive.

e Risk: Ignoring overlapping bets may lead to underestimating risk exposure and mismanaging
bankrolls, potentially resulting in unexpected losses or liquidity issues.

4. Hypothesis: Independence of Match Outcomes

e Domain of Validity: Appropriate when matches are truly independent events without any
influence on each other.

e Limitation with Reality: In reality, match outcomes can be correlated due to common factors;
this simplification overlooks potential dependencies.

e Risk: Assuming independence when correlations exist can lead to inaccurate probability assess-
ments and risk underestimation, possibly causing overbetting on correlated outcomes and increas-
ing the chance of significant losses.

5. Hypothesis: Static Information Environment

e Domain of Validity: Suitable for very short periods where no new information is expected to
arrive.

e Limitation with Reality: Information flows continuously in real markets; ignoring new infor-
mation is unrealistic and limits strategic adjustments.

e Risk: By not accounting for new information, we risk making decisions based on outdated data,
leading to poor betting choices and missed opportunities to adjust strategies in response to market
changes.

2.4.8 Conclusion

By adhering to the constraints imposed by these hypotheses, we effectively narrow the search space, making
it easier to find an optimal solution for our simplified problem. However, it’s important to note that the first
hypothesis —assuming an additive utility function with no intertemporal dependencies— will not be applied
(in every case) in our model. As a result, the optimal solution we derive will differ -if using a non additive
utility- from the true optimal solution for the general (using the same utility function), constrained problem
under the four next assumptions.
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2.5 Incorporating Estimated Probabilities in Betting Strategies

In the real-world sports betting environment, both bettors and bookmakers do not have access to the true
probabilities of match outcomes. Instead, they rely on their own estimations based on available information,
statistical models, expert opinions, and other predictive tools. These estimated probabilities often differ
from the true underlying probabilities and can vary between bettors and bookmakers due to differences in
information, analysis techniques, and biases.

This section introduces the concept of estimated probabilities for match outcomes as perceived by bettors
and bookmakers, explains the necessity of considering these estimates in modeling betting strategies, and
provides analytical derivations for expected gain and variance incorporating these estimated probabilities. We
also explore how these differences influence optimal betting strategies, particularly through the application
of the Kelly Criterion.

2.5.1 Estimated Probabilities
Let:

k

° rf: The true probability of outcome wf occurring in match mk.

k

° pf 7. The probability estimate of outcome w;’ as perceived by bettor J.

° pf’B : The probability estimate of outcome w’ as perceived by bookmaker B.

Due to the inherent uncertainty and complexity of predicting sports outcomes, the estimated probabilities
pf"] and pf’B generally differ from the true probabilities ¥ and from each other. These discrepancies are
critical in the betting market because they create opportunities for bettors to find value bets (situations where
they believe the bookmaker’s odds underestimate the true likelihood of an outcome) and for bookmakers to
manage their risk and profit margins.

2.5.2 Utility Maximization and the Role of Estimated Probabilities

The bettor aims to maximize their expected utility, which is influenced by both the expected value and the
variance of the bankroll factor. The utility function U encapsulates the bettor’s risk preferences.
Expected Utility in Terms of Bankroll Factor

The expected utility at time ¢ + 1 is given by:

E,s [U (BFpettor(t +1))] = Z U (BFpettor(t + 1)) x Probability of outcomes

all outcomes

To compute this expectation, the bettor must consider all possible combinations of match outcomes,
weighted by their estimated probabilities pfk‘] This requires:

e Knowledge of pfk"] for each outcome i; in match k.

e Calculation of BFpetior(t + 1) for each possible combination of outcomes.

Assuming there are M matches at time ¢ to bet on, each with N (k) possible outcomes, the expected utility
expands to:

N()N(2) N(M)

M
E;DJ [U (BFbettor(t + 1))] = Z Z T Z U (BFlgi}c:cl‘cfr“”’iM)(t + 1)) X H pi'c;;J
k=1

i1=1142=1 i =1

Where:

e i, indexes the outcome of match k.

. BFéii’tiz;”"iM)(t + 1) is the bankroll factor after all matches, given the outcomes iy, 12, ...,ip.
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° pf"] is the estimated probability of outcome i for match k.
k

e The product HkM:1 pf};‘] represents the joint probability of the specific combination of outcomes, assum-
ing independence between matches.

For each outcome combination (i1, 42, ...,4p), the bankroll factor is calculated as:

M
BFézlt,t?r,..,,lM)(t + ].) = BFbettor(t) X <]. + Z fkaoik (Okhoik — ]_))
k=1

Where:
® fi,. is the fraction of the bankroll wagered on outcome o0;, in match k.
»04y, k
® 0k, Is the odds offered by the bookmaker for outcome o;, in match k.

An analytic simplification demonstration for the Kelly criteria, u = In, can be found at the end of this
work B.

Importance of Accurate Probability Estimates

The bettor’s decisions hinge on their estimated probabilities. Inaccurate estimates can lead to sub-optimal
betting strategies:
e Overestimation of probabilities may cause the bettor to wager too much, increasing the risk of
significant losses.

e Underestimation may result in conservative wagers, leading to missed opportunities for profit.

By accurately estimating the probabilities, the bettor can better align their strategy with their utility
function, optimizing the trade-off between expected return and risk.

2.5.3 Expected Bankroll Factor

The expected value E of the bankroll factor BF corresponds to a simple utility function U(B) = B,
representing a risk-neutral perspective. This expected value is crucial in understanding the growth of wealth
without considering risk preferences. An analytic form for this expectation can be derived straightforwardly.

The expected bankroll factor at time ¢+ 1 incorporates the bettor’s actions and the estimated probabilities
of outcomes. The evolution of the bankroll factor from time ¢ to ¢ + 1 is given by:

M NF

BFuan(t+1) = BFeior(t) |1+ 3057 £57(8) (o P () X8 1)
k=1i=1
Here, X[ is an indicator variable that equals 1 if outcome w! occurs and 0 otherwise. The term inside the

square brackets represents the return on the bettor’s wagers during time t.

Calculating Expected Bankroll Factor

To find the expected bankroll factor at time ¢ + 1, we take the expectation with respect to the bettor’s
estimated probabilities pf"]:

M N*

k,J k,B k,J
Eps [BRfuior(t +1)] = BRlawor(®) |1+ 303 1570 (o Pt - 1)
k=11:=1

This expression shows that the expected growth of the bettor’s bankroll factor depends on:
e The fraction of the bankroll wagered f”(t).

e The odds offered of’B(t).

e The bettor’s estimated probabilities pf"] of the outcomes.
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2.5.4 Variance of the Bankroll Factor

The variance of the bankroll factor provides insight into the risk or uncertainty associated with the bettor’s
strategy. A higher variance indicates greater risk, which may or may not be acceptable depending on the
bettor’s utility function.

Calculating Variance for a Single Match

For a single match mF, the variance of the bankroll factor component due to that match is:

Nk
2
Vatys [BEfior (4 1)] = (BFasen (1) Var |37 157 @) (0P (0 XF ~ 1)
=1

Within match m”, the outcomes are mutually exclusive and collectively exhaustive, so we account for the
covariance between different outcomes.
The variance expands to:

Nk
Tk 2 k,J 4\ k,B 2 k,J 4\ k,B k,J N k,B
Vaty,s [ BR (6 +1)] = (BFlsor () [Z (7 ol ) VarlxF] =23 £ 0ol P (011 (1) P (1) CovlX), X
i=1 i<j
Given that Xf is a Bernoulli random variable with success probability rZ’?, the true probability of outcome
W

k.
Var[X[] = rf(1 —7f)

However, the bettor does not know rl’? and may use their estimated probability pf"] in their calculations.
Despite this, the true variance depends on r¥, reflecting the inherent risk in the actual outcomes.
For the covariance between different outcomes:

Cov[ X[, X[] = —rfr}

This negative covariance arises because only one outcome can occur in a match.

Total Variance Across All Matches

Assuming independence between different matches, the total variance of the bankroll factor is the sum over
all matches:

M [ Nk 9
Varp‘] [BFB]ettor(t + 1)] = (BFI;]ettor (t))2 Z [Z (fzk,J<t)Of,B(t)) Tf(l—’l"f)—2 Z fik’J(t)Of’B(t)fgk7J(t)0‘];7B(t>rfr§:

k=1 Li=1 i<j

Implications for Risk Management Understanding the variance of the bankroll factor helps the bettor
manage risk. A higher variance indicates that the bankroll factor is more sensitive to the outcomes of the
bets, which could lead to larger fluctuations in wealth.

2.5.5 Comparison of Objectives: Bettor vs. Bookmaker
Bettor’s Perspective

The bettor observes the odds of’B(t) offered by the bookmaker and decides on the fractions fik"](t) of their
bankroll to wager on each outcome w. The bettor’s optimization problem is to choose fik /(1) to maximize
their expected utility, given their estimated probabilities pf’J.
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Bookmaker’s Perspective

The bookmaker sets the odds of’B(t) before knowing the exact fractions fik"](t) that bettors will wager. The
bookmaker faces uncertainty regarding the bettors’ actions and must estimate the aggregate fractions:

F(t) = foJ<t)
J

across all bettors.
The bookmaker’s optimization problem involves setting the odds of’B(t) to maximize their expected utility,
considering their own estimated probabilities pf’B and their expectations about bettors’ wagering behavior.

Asymmetry and Strategic Interaction

This asymmetry creates a strategic interaction:

e Bettor’s Advantage: The bettor acts after observing the odds, optimizing their bets based on their
own estimated probabilities and the offered odds.

e Bookmaker’s Challenge: The bookmaker sets the odds without knowing the exact betting frac-
tions but must anticipate bettors’ reactions. They need to estimate F(¢) to manage risk and ensure
profitability.

If the aggregate fractions wagered by bettors are biased relative to the true probabilities, the bookmaker’s
optimization may lead to odds that create opportunities for bettors. This can happen if bettors do not
optimize their bets uniformly or have varying probability estimates, giving an advantage to informed bettors
even when their estimated probabilities are closer to the bookmaker’s than to the true probabilities.

2.6 Conclusion

While this framework provides a solid structure for understanding the dynamics of the betting market, it
comes with several limitations. First, the assumptions of independent match outcomes and a static informa-
tion environment simplify the complexity of real-world dynamics, where outcomes may be correlated, and
new information arrives continuously. Additionally, we do not optimize the timing of bets, which is a critical
factor in real betting markets where odds fluctuate over time.

Moreover, the non-additivity of certain utility functions, such as logarithmic and exponential utilities, limits
the general interpretation of long-term gain and risk. While maximizing utility in each time period offers
insights into short-term decision-making, it does not fully capture the long-term wealth dynamics, especially
under more realistic non-additive frameworks. This can affect the risk management strategies of both bettors
and bookmakers, particularly when considering future opportunities and evolving market conditions.

In the next section, we will focus on the implementation of a system to apply this framework and evaluate
it in practice, through both simulation and the integration of real-world data. This will allow us to test the
framework’s assumptions and explore the effects of relaxing some of these limitations.
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Chapter 3

Design and implementation of the
solution

3.1 Introduction

In the realm of sports betting, football stands out as an ideal focus for developing predictive and optimization
models due to its global popularity and the abundance of available data. The rich historical datasets,
comprehensive statistics, and extensive coverage make football a fertile ground for data-driven analysis. By
concentrating on football, we can leverage vast amounts of information to build robust models that capture
the nuances of the game, ultimately enhancing the accuracy of predictions and the effectiveness of betting
strategies.

This chapter provides a comprehensive overview of the system architecture designed to implement the
theoretical framework outlined earlier. We present the various components of the system, describe how they
interact, and explain the workflows involved in data collection, storage, processing, and presentation. The
goal is to give the reader a clear understanding of how the theoretical concepts are translated into a practical,
working solution before delving into the specifics of the inference and optimization modules in subsequent
chapters.

3.2 General System Architecture

The system is designed with modularity and scalability in mind, adhering to a microservices architecture [22]
that allows individual components to operate independently and communicate through well-defined interfaces.
This approach facilitates maintenance, testing, and future enhancements.

3.2.1 Components Overview

The system comprises the following primary components:

e Data Collection Module: Responsible for gathering historical and real-time data on football matches
and betting odds from various sources.

e Database: Centralized storage for all collected data, predictions, and optimization results.

e Prediction Module: Utilizes machine learning models to estimate the probabilities of different match
outcomes.

e Optimization Module: Computes optimal betting strategies based on the selected utility function
and model predictions.

e Model Monitoring Module: Monitors training of inference models.

e User Interface (UI) and Backend: Provides users with access to data, predictions, and betting
recommendations through a web-based platform.
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e Scheduler: Automates the execution of tasks such as data collection, model retraining, and optimiza-

tion at predefined intervals.

e APIs: Facilitate communication between components, ensuring seamless data flow and integration.

3.2.2 Interactions Between Components

The interactions between the components are orchestrated to ensure efficient data processing and timely
updates:

1.
2.

The Data Collection Module retrieves data from external sources and stores it in the Database.

The Prediction Module trains models and infers probabilities on asked outcomes using data from
the Database and storing the results in the Database. The training of the models is monitored using
the Model Monitoring Module which stores the models metrics into the Database.

. The Optimization Module calculates optimal betting fractions based on the predictions and current

odds stored in the Database using a given strategy.

. The User Interface fetches data from the Database via the Backend and presents it to the user.

. The Scheduler triggers data collections, training, inference and optimisation using the APIs from

Data Collection Module, Prediction and Optimization Module at specified times scheduled.
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Figure 3.1: Architecture of the system

3.3 Data Collection

Accurate and comprehensive data collection is vital for building reliable predictive models and effective betting
strategies. The goal is to build an historical database which continues to build with real time relevant data.
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3.3.1 Data Sources Used

We utilize a variety of reputable sources to gather data:

e Football Match Data: Historical match results, match schedule, team statistics, player performance
metrics, and other relevant information are sourced using scrapping on two websites:

— FBref: For historical match results and coming match schedule.

— SoFifa: For teams and players past and current ratings and statistics.
e Odds Data: Betting odds are collected from multiple bookmakers through one API.

— The Odds API: The free tier credits allows to perform 500 requests per month on various sports,
bookmakers and leagues to retrieve the current odds. Historical odds data are not included.

3.3.2 Collection Methods

Data is collected using a combination of methods:

Web Scraping A fork of the Soccerdata python library, has been adapted to scrape data from websites
that do not provide APIs (FBref, SoFifa).

APIs For sources that offer APIs (The Odds API), we integrate with them using HTTP requests to fetch
structured data efficiently.

Data Pre-processing Collected data undergoes a very simple pre-processing to ensure consistency and
usability:

e Data type conversion: Adapting the type of the data to the most adapted type.

e Unity: Only inserting new data in the database, or filling None values of existing data (for instance,
the score of a match is only available after the match is played

e Integration: Aligning data from different sources for seamless storage and analysis.

3.4 Data Storage

A robust data storage solution is essential for managing the diverse datasets involved.

3.4.1 Database Choice

We opted for a relational database management system (RDBMS), specifically PostgreSQL, due to its relia-
bility, scalability, and support for complex queries.

3.4.2 Data Model

The database schema is designed to reflect the relationships between different types of data:

Tables

e ‘fbref_results‘: Each row corresponds to a match (historic and coming), with league, date and time of
the match, both team and score if match is finished and the result is available and fetched from FBref
website.

e ‘sofifa_teams_stats‘: Each row corresponds to a a team and a date of update with metrics and
categorical values that represent at best the team at the moment of the update (overall score, attack,
build_up_speed ...).
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e ‘soccer_odds‘': Each row corresponds to a match, a bookmaker, an outcome with its odd at a given
update time. There is also information about the commence time of the match, the league, the home
and away team names, the type of odd...

e ‘models_results‘: Each row corresponds to a match, the inference results of the model, the date-time
of inference and the model used, with additional information such as the date and tile of the match
and home and away team.

e ‘optim_results‘: Each row corresponds to a game, a date time of optimisation, the model used for
inference, the best odds for each outcome found across a pool of bookmaker as well as the bookmakers
names of each odds chose and the fraction of the bankroll to invest given utility function. There is
additional information such as the probability inferred and used by the optimiser, the date-time of
inference of these probabilities, the date and time of the match...

[ ———"—

dbdiagram.io

Figure 3.2: UML diagram of the database

3.5 Module Overview

The system incorporates several modules, each performing specific functions within the overall architecture.
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3.5.1 Data Collection Module

As described earlier, this module is responsible for fetching and pre-processing data from various sources.

3.5.2 Prediction Module

Although detailed discussion is deferred to a later chapter, this module uses machine learning algorithms to
predict the probabilities of different match outcomes based on historical data.

3.5.3 Optimization Module

This module calculates optimal betting strategies by applying mathematical optimization techniques to the
predictions and odds data. The specifics of the optimization algorithms and utility functions will be explored
in a subsequent chapter.

3.5.4 Scheduler

The scheduler automates the execution of tasks such as data collection, model retraining, inference, and
optimization. It ensures that the system remains up-to-date with the latest data and predictions.

3.5.5 User Interface and Backend

The user interface provides a platform for users to access data, view predictions, and interact with the system.
The backend handles user requests, processes data, and communicates with other modules via APIs.

3.6 User Interface and Monitoring

3.6.1 User Interface Design

The Ul is designed to be intuitive and user-friendly, providing clear visualizations and easy navigation.

Features

e Dashboard: Displays key metrics, including upcoming matches, predicted probabilities, and recom-
mended betting strategies.

e Historical Data Access: Allows users to explore past matches, predictions, and outcomes.

e Customization: Users can select preferred bookmakers according to their interests.

3.6.2 Monitoring

System health and performance are monitored continuously:

e Logging: Activity logs are maintained for debugging and audit purposes.

e Alerts: Notifications are sent in case of errors or significant events.

3.7 Conclusion

This chapter provided an overview of the system architecture implemented to realize the theoretical framework
developed earlier. By focusing on football, we leverage abundant data to build predictive models and optimize
betting strategies. The modular design, utilizing microservices and APIs,ensures scalability and flexibility.
The database serves as the central repository, integrating data from various sources and supporting the
different modules. The user interface offers a gateway for users to access the system’s functionalities. In the
subsequent chapters, we will delve into the specifics of the prediction and optimization modules, as well as
the deployment strategy using Kubernetes and containerization technologies.
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Chapter 4

Predictive Modeling of Match
Outcomes

4.1 Introduction

This chapter presents the development, training, and evaluation of a predictive model aimed at forecasting
the outcomes of football matches. The primary objective is to construct a robust model that can accurately
predict match results, thereby optimizing gains in sports betting [3] [9]. The significance of predictive
modeling in the context of sports betting lies in its potential to provide bettors with a strategic advantage
by identifying value bets and minimizing risks.

4.2 Performance Metrics and Selection Criteria

Evaluating the performance of a predictive model in a multi-class classification setting, especially with im-
balanced classes, requires a comprehensive set of metrics. This section delineates both classic and advanced
metrics employed in this study, incorporating mathematical formulations and addressing class imbalance.
Given the three-class problem—home win, draw, and away win—with home wins constituting 47% of the
data, it is crucial to select metrics that provide a nuanced understanding of model performance across all
classes.

4.2.1 Metrics

A list of all the metrics considered with their used definition can be found in Appendix F.

4.2.2 Selection Criteria

Accurate evaluation of the predictive model requires appropriate performance metrics, particularly in a multi-
class classification context with class imbalance. The primary goal of this study is to ensure that the predicted
probabilities of football match outcomes (home win, draw, away win) closely align with the true probabilities,
emphasizing well-calibrated probability estimates.

Given the class distribution—47% home wins, 26% draws, and 25% away wins—we have selected the Mean
Squared Error (MSE) as the primary metric for assessing calibration. MSE directly measures the average
squared difference between predicted probabilities and actual outcomes, making it suitable for evaluating
how well the model’s probabilities reflect the true frequencies.

In addition to MSE, we will consider the following metrics to provide a comprehensive evaluation:

e Log Loss: To assess the quality of the predicted probability distributions by penalizing incorrect and
overconfident predictions, thus encouraging well-calibrated estimates.

e Classwise Expected Calibration Error (ECE): To evaluate the calibration of predicted probabili-
ties for each class individually, offering insights into how closely these probabilities match the observed
outcomes across different categories.
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e Accuracy for Home Win, Draw, and Away Win: To examine the model’s performance on each
outcome separately, taking into account the class imbalance.

By focusing on MSE for calibration and incorporating Log Loss, Classwise ECE, and class-specific accuracy,
we aim to ensure that the model not only produces accurate probability estimates but also maintains reliability
across all outcome categories. This concise set of metrics aligns with our objective of accurately predicting
football match outcomes while ensuring the predicted probabilities are well-calibrated and trustworthy.

4.3 Exploration and Choice of Features

Selecting appropriate features is pivotal for building an effective predictive model. This section delineates
the various types of features utilized in this study, the methodology employed for feature selection, the
engineering of new features to enhance predictive power, and the handling of categorical variables to ensure
they are appropriately represented in the model.

4.3.1 Types of Features Utilized

The feature set comprises a combination of ranking-based, simple statistical, and domain-specific features.
Each feature is defined mathematically where applicable and accompanied by an explanation of its relevance
and computation.

Ranking Features

Ranking features provide a quantitative measure of team strength based on historical performance. These
metrics are crucial as they encapsulate the overall ability and consistency of teams over time. All ranking
features detailed formula are described in G.

e Elo Score

The Elo score [10] [16] is a rating system originally developed for chess but widely adapted to various
sports to rate players or teams. It reflects the relative skill levels of the teams based on game outcomes.
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Figure 4.1: Elo score of 5 football teams evolving during time

e Glicko-2 Score
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The Glicko-2 score [12] is an advanced rating system developed by Mark Glickman, which enhances
the Elo rating system by incorporating not only the skill levels of teams or players (R) but also the
reliability of these ratings through Rating Deviation (RD) and volatility. This system provides a more
dynamic and accurate reflection of performance by accounting for the uncertainty and variability in
teams’ ratings.

e TrueSkill

The TrueSkill [14] is a Bayesian ranking system developed by Microsoft, primarily used in gaming but
adaptable to sports analytics. It models each team’s skill as a Gaussian distribution, updating beliefs
about team strengths based on match outcomes.

Simple Statistical Features

Simple statistical features offer basic quantitative measures of team performance, providing foundational data
for the predictive model.

e Average Goals Scored per Season: Total goals scored by a team divided by the number of matches
played so far.

e Average Goals Conceded per Season: Total goals conceded by a team divided by the number of
matches played so far.

Sofifa Performance Metrics

SoFTFA provides detailed metrics for both individual players and teams, based on data from the FIFA video
game by EA Sports. This document outlines the primary metrics and explains how team ratings are calculated
using individual player attributes.

e Player Metrics The primary player metrics on SOFIFA are based on individual attributes that are
weighted differently depending on the player’s position. Below are the key metrics:

— Overall Rating (OVR): This is the weighted average of various player attributes, with different
weights depending on the position. For example, an attacker (Forward) will have more emphasis
on Shooting and Pace, while a defender (Centre Back) will weigh attributes like Defending and
Physicality more heavily.

— Pace (PAC): Calculated as a combination of the Acceleration and Sprint Speed attributes.
— Shooting (SHO): Includes Finishing, Shot Power, Long Shots, and Positioning.
— Passing (PAS): Comprised of Vision, Short Passing, and Long Passing.
— Dribbling (DRI): Includes Ball Control, Dribbling, Agility, and Balance.
— Defending (DEF): Based on Tackling, Marking, Interceptions, and Defensive Awareness.
— Physicality (PHY): Includes Strength, Stamina, and Aggression.
— Potential: Indicates the maximum possible rating the player can achieve over time.
The formula for the Overall Rating (OVR) is generally unknown, but it can be expressed as a weighted

sum of key attributes, depending on the player’s position. A simplified formula for a forward might
look like:

OVRForward = Wy - PAC + waq - SHO + ws - DRI =+ wy - PAS
where w1, ws, w3, wy are position-specific weights.

e Team Metrics Team metrics on SoFIFA are calculated by aggregating individual player ratings,
focusing on key areas like attack, midfield, and defense. The following are the primary team metrics:

— Overall Team Rating: A weighted average of the starting 11 players’ Overall Ratings, consid-
ering the importance of each player’s position.
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— Attack Rating: The average Overall Rating of forwards and attacking midfielders, weighted
based on the formation.

— Midfield Rating: The average Overall Rating of central and wide midfielders, weighted based
on their roles in the formation.

— Defense Rating: The average Overall Rating of defenders and goalkeepers.

A simplified version of the team rating could be expressed as:

11
1
Team OVR = I ; OVR;

where OVR; represents the Overall Rating of the i-th player in the starting lineup.

Sofifa metrics are comprehensive team-specific performance indicators sourced from the Sofifa database,
widely used in sports analytics and fantasy football contexts.
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Figure 4.2: Different scores of 5 football teams evolving during time
A detailed description of each of the 90 features used can be found her H.

4.3.2 Feature Selection Methodology

Feature selection was performed using a forward selection approach applied to a logistic regression model. This
method iteratively adds the most significant features, enhancing predictive performance while maintaining
model simplicity.
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Forward Selection with Logistic Regression

Procedure: Starting with no features, at each iteration, the feature that most improves the model’s fit is
added. The selection criterion is based on the mse (mean squared error).

Explanation: By incorporating features that significantly contribute to the model, forward selection
optimizes predictive accuracy and ensures interpretability by excluding irrelevant variables.

4.4 Data Preparation

We trained our model on matches from 2006 to the present, focusing on games from the top 5 European
leagues, European championships, and World Cups during this period. The limiting factor in our data came
from SoFIFA, which does not provide data prior to 2006, while FBref offers data extending far into the
past. We merged the two datasets based on team names and computed the ranking and statistical features
described earlier, initializing the metrics at the first entry of a team in a tournament. For categorical features,
we applied one-hot encoding. We removed matches with any missing values in the columns, then applied a
standard scaler. This left us with 28,850 completed matches and a 90-feature vector for each match to train
our model.

Metric Value
Total matches 28,850
Matches in Top 5 Leagues 28,481
Matches in European Championships 185
Matches in World Cup 184
Home win ratio 45.0 %
Draw ratio 25.4 %
Away win ratio 29.5 %
Average home team goals 1.54
Average away team goals 1.19
Average Elo rating 1558
Number of unique teams 242
Number of features per match 90
First match date 2006-09-09
Last match date 2024-09-24

Table 4.1: Summary Metrics for the Dataset

4.5 Cross-Validation on Temporal Data

In predictive modeling with football match data, which is inherently temporal, it’s essential to use cross-
validation techniques that respect the chronological order of observations. Standard cross-validation methods,
such as random shuffling or traditional k-fold cross-validation, are unsuitable because they can lead to data
leakage by training models on future data to predict past events.

Traditional cross-validation assumes that data samples are independent and identically distributed (i.i.d.)
and that the order of observations does not matter. In temporal data, however, observations are time-
dependent, and future events should not influence model training aimed at predicting past events. Using
standard methods can result in:

e Data Leakage: Incorporating future information into the training set leads to overly optimistic per-
formance estimates.

e Violation of Temporal Order: Disrupting the sequence of events undermines the model’s ability to
generalize to real-world forecasting scenarios.

To address these issues, we employ cross-validation methods designed for temporal data [4].
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4.5.1 Sliding Window Cross-Validation

This technique involves moving a fixed-size window across the data timeline. In each iteration, the model is
trained on a training window and tested on the immediately following testing window.

e Choose a training window size Wi, and a testing window size Wiegt.
e For each iteration:

— Train the model on data from time ¢ to t + Wipain — 1.
— Test the model on data from ¢ + Wipain to t + Wirain + Wiest — 1.
— Slide the window forward by Wies units.

4.5.2 Expanding Window Cross-Validation

Also known as growing window, this method expands the training set with each iteration by including more
historical data.

e Start with an initial training window of size Wipitjal-
e For each iteration:

— Train the model on data from time ¢ to t + Wiain — 1, where Wi, ain increases with each iteration.
— Test on the subsequent data from ¢ + Wipain t0 t + Wirain + Wiest — 1.

— Expand the training window to include the latest testing window.

Time Present Time Present
pass 1 I ; pass 1 I i
Pass2 pass 2
Pass 3 I Pass 3 [N
Pass 4 | Pass 4 [

Pass 5 I pass 5 [
oropped [l Treining Forecasting Bl i Forecasting
Figure 4.3: Sliding window graphic Figure 4.4: Expanding window graphic

The results presented below were obtained using an expanding window technique with 5 folds and a test
set ratio of 0.2. Notably, the results were very similar when applying the sliding window method.

4.6 Choice and Justification of the Prediction Model

In this section, we present the results of the feature selection and model selection processes [13] [8], followed by
interpretations of the selected model’s performance. Feature selection was conducted using forward selection,
and multiple classification models were evaluated to determine the most suitable model for predicting football
match outcomes.

4.6.1 Feature Selection Using Forward Selection

Feature selection was performed using forward selection with logistic regression, iteratively adding the most
significant feature at each step based on mean squared error (MSE) improvement, using an expanding window
validation with 5 splits and a test size of 20% of the training data.
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Table 4.2: Feature Selection Process Summary

Method Details
Feature Selection Forward Selection
Model Used Logistic Regression

Validation Method  Expanding Window (5 splits)
Performance Metric ~ Mean Squared Error (MSE)
Test Size 20% of training data

We selected 35 features, which corresponding to the features resulting in the lowest MSE, using this feature
selection strategy.

Table 4.3: Feature Selection with Corresponding MSE and their adding number

Order | Feature Added MSE | Order | Feature Added MSE
1 Elo Away 0.20613 19 Home Passing Risky 0.19438
2 Elo Home 0.19661 20 Away Positioning Org. 0.19436
3 Glicko Vol Away 0.19619 21 Away Defense Pressure Med | 0.19435
4 Away Overall 0.19594 22 Away Domestic Prestige 0.19434
5 Home Overall 0.19540 23 Away Shooting Lots 0.19433
6 Away Build Speed Slow 0.19518 24 Home Defense Line Offside 0.19432
7 Away Avg Age 0.19501 25 Away Team Width 0.19431
8 Home League INT 0.19487 26 Home Defense Pressure Med | 0.19431
9 Home Avg Goals 0.19476 27 Home Build Speed Slow 0.19430
10 Home Positioning Org. 0.19467 28 Away Defense Aggression 0.19430
11 Home Build Speed Fast 0.19461 29 TrueSkill Home 0.19430
12 Away Defense Pressure High | 0.19457 30 Away Build Positioning Org. | 0.19430
13 Away Defense Offside Trap 0.19453 31 Away Defense 0.19430
14 Home League ITA 0.19449 32 Home Attack 0.19427
15 Glicko RD Home 0.19447 33 Home Defense Prestige 0.19427
16 Home Shooting Normal 0.19444 34 Away Attack 0.19427
17 Away Passing Mixed 0.19442 35 Away League INT 0.19427
18 Away Avg Goals 0.19440

The table above summarizes the features added during the selection process and their corresponding MSE
values, highlighting the importance of each feature as it contributes to minimizing the error. As we can see,
features such as Elo ratings and overall team metrics play a significant role [19]. Now, let’s examine how the
number of features impacts the performance metrics more broadly, as shown in the following feature selection
graph.
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Figure 4.5: Metrics of interrest function of the number of features added

This graph shows the performance of various metrics (MSE, log loss, accuracy for home, draw, and away
predictions, and classwise ECE) as a function of the number of selected features. The MSE (in blue) decreases
as more features are added, stabilizing around the optimal point before increasing again, which suggests that
selecting too many features can lead to overfitting. Similarly, log loss follows a similar trend (in red),
indicating better model calibration with fewer features. The accuracy metrics (home, draw, away) fluctuate,
but accuracy seems to peak at a certain range of features, with performance diminishing as more features
are added. Classwise ECE (in pink) decreases and then increases, a little bit before MSE and log loss,
indicating better calibration for class predictions with fewer features. Overall, the graph highlights the
balance between feature selection and model performance, suggesting that an optimal subset of features
yields the best generalization.

4.6.2 Model Selection

The following table summarizes the performance of various classification models [5], comparing metrics such
as mean squared error (MSE), log loss, classwise ECE, and accuracy for home, draw, and away predictions
to identify the best-performing model.

Table 4.4: Model Performance Comparison

Model MSE | Log Loss | C. ECE | A. Home | A. Draw | A. Away
Logistic Regression 0.195 0.983 0.029 0.605 0.733 0.702
Logistic Regression CV 0.196 0.983 0.028 0.602 0.735 0.703
Gradient Boosting Classifier 0.199 1.002 0.037 0.604 0.709 0.706
Random Forest Classifier 0.202 1.022 0.038 0.595 0.705 0.693
Extra Trees Classifier 0.204 1.026 0.043 0.597 0.683 0.686
AdaBoost Classifier 0.221 1.092 0.069 0.599 0.721 0.695
Bagging Classifier 0.224 2471 0.093 0.602 0.646 0.661
MLP Classifier 0.224 1.187 0.108 0.585 0.665 0.684
K Neighbors Classifier 0.238 5.404 0.096 0.599 0.643 0.631
Gaussian NB 0.332 7.570 0.302 0.615 0.584 0.625
Quadratic Discriminant Analysis | 0.353 10.831 0.316 0.582 0.561 0.613
Decision Tree Classifier 0.390 20.219 0.195 0.578 0.614 0.638
Extra Tree Classifier 0.399 20.686 0.200 0.559 0.615 0.628

4.6.3 Interpretation of Results

The selection of the logistic regression model allows for straightforward interpretation of feature effects on
the predicted probabilities of match outcomes.
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Feature Importance

Feature importance was assessed based on the magnitude of the coefficients in the logistic regression model.
Below sits the feature importance of the Home win class. Draw and Away win classes analysis can be found
in L.
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Figure 4.6: Coeflicients of the Logistic Regression Model for Home win class

For the home class, the most important features, such as Elo ratings for the away and home teams,
suggest that pre-match team strength is the most significant predictor of match outcomes. Both overall team
quality and specific defensive attributes, like pressure and aggression, also play a key role. Features related
to player average characteristics, such as average age and tactical elements like build-up speed, indicate
that team composition and playstyle are also relevant, though their impact is less pronounced. Defensive
strategies, particularly pressure and team width, add further predictive value, showing the importance of
tactical decisions in determining match results. The feature importance analysis graphs for draw and away
class can be found in the annex section.

Why Logistic Regression Outperforms Other Models

Logistic regression may outperform other models due to its simplicity and interpretability, especially when
feature selection is based on it. By using logistic regression for feature selection, the model is specifically tuned
to highlight the most important predictors of the outcome, leading to better generalization. Additionally,
logistic regression handles multicollinearity well when regularization is applied, preventing overfitting. The
linear relationship between the features and the log-odds of the outcomes makes it easier to capture important
patterns in the data, particularly in problems like sports prediction where relationships between variables are
often linear. Other models, such as random forests or gradient boosting, may add unnecessary complexity
and are more prone to overfitting when features are already well-selected.

4.7 Training and Retraining of the Model

Figure 4.7 illustrates the Mean Squared Error (MSE) of two models over time, where the blue line represents
Model A with no retraining, and the orange line represents Model B, which is retrained daily. Both models
are initialy trained from 2006-01-01 up to 2010-01-01 data and are evaluated using a 120-day rolling average.
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Figure 4.7: Model MSE rolling average over time

From the figure, we observe that Model B, which is frequently retrained, exhibits lower MSE compared to
Model A throughout most of the time period. Retraining appears to allow Model B to adapt more effectively
to evolving patterns, leading to consistently better performance in terms of accuracy. Moreover, as time
goes by, we can observe a mse drift from the not retrained model as well as a slight improvement from the
retrained model.

There are very few periods where Model A outperforms Model B. It appends especially during phases of sud-
den changes. Despite these fluctuations, retraining offers a more stable and improved long-term performance.

The results highlight the importance of regular retraining for maintaining model accuracy, particularly in
dynamic environments where data patterns change over time.

4.8 Conclusion

This chapter presented the development, training, and evaluation of a predictive model for football match
outcomes, with a focus on sports betting. Feature selection via forward selection with logistic regression
helped identify key predictors, and regular retraining improved model performance over time.

However, several limitations remain:

e Hyperparameters and Features: Ranking feature hyperparameters were left at default, and addi-
tional domain-specific or external data sources could further improve predictions.

e Feature Selection: Feature selection was arbitrarily based on logistic regression, and no hyperparam-
eter optimization was performed for any models.

e Retraining: The timing and method of retraining (e.g., sliding window) were not explored, potentially
missing optimal strategies as well as posing computational challenges that could be optimized.

e Model Complexity: Incorporating deep learning models could enhance predictive performance, par-
ticularly for capturing complex patterns in the data.

e Bookmaker Odds Decorrelation: Adding a metric to assess the decorrelation between model predic-
tions and bookmaker odds could help identify more value bets and further optimize betting strategies.

In the next chapter, we address the optimization problem of determining the bankroll share to invest on each
outcome, building on the predictions of this model to develop actionable betting strategies.
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Chapter 5

Optimization of bankroll allocation

5.1 Introduction

Effective bankroll management is a critical component of successful sports betting. It involves determining
the optimal amount to wager on each bet to maximize growth while minimizing the risk of ruin. This section
details the development and evaluation of an optimization module designed to calculate the optimal fraction
of the bankroll to invest in each betting opportunity. The module leverages probabilistic forecasts from the
predictive models discussed in the previous section and applies various investment strategies, including the
Kelly criterion, expected value maximization, and naive betting approaches.

5.2 Methodology

5.2.1 Investment Strategies

This section provides an overview of the different bankroll allocation strategies implemented, ranging from
naive methods to more advanced optimization techniques. The focus is on the principles guiding each strategy,
with a detailed formula provided only for the naive strategy.

List of Strategies

e Kelly Criterion Strategy: [18] [24] This strategy maximizes the logarithmic utility of wealth, aim-
ing for long-term bankroll growth while managing risk. The bankroll fractions are derived from the
analytical solution using the approximations B, E(U(B)) = E(B) — 1 - Var(B) which comes down to a
Linear utility strategy using A = %

e Log Utility Strategy: Similar to the Kelly criterion, this strategy focuses on maximizing the expected
logarithmic utility U(B) = In(B) but using no approximations C.

e Exponential Utility Strategy: This strategy uses an exponential utility function U(B) = —e~*B to
take into account the bettor’s risk aversion, balancing between expected returns and risk tolerance D.

e Linear Utility Strategy: In this strategy, the objective is to maximize the trade-off between expected
returns and risk, represented by the function E(U(B)) = E(B) — A - Var(B). For the simulations, we
set A = 10, reflecting a high level of risk aversion. This approach seeks to maximize returns while
penalizing high variance, aiming to balance growth and stability E.

e Expected Value Maximization Strategy: This strategy optimizes bankroll allocation based purely
on maximizing expected value, U(B) = B, without considering risk or variance.

e Naive Strategy: Bet on the Most Likely Outcome: In this straightforward approach, the bettor
places the entire bet on the outcome with the highest implied probability, as per the bookmaker’s odds.
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The formula for this strategy is:

o= a7, if i = argmax(oy)
i 0, otherwise

where:

— fk,i is the fraction of the bankroll wagered on outcome 7 of match &,
— oy, are the odds for match k.

— M is the number of matches available.

This strategy is simple and allocates all the available funds to the outcome with the highest bookmaker
odds.

These strategies were benchmarked against each other in the Monte Carlo simulations and then Online
testing to assess their effectiveness in managing risk and maximizing bankroll growth.

For each strategy, a factor of v = % was applied to the bet fractions to ensure that not the entire bankroll
was wagered at any given time, thereby providing a margin of safety, such as: fotrategy_final =7 X fstrategy-

5.2.2 Optimization Algorithms

Two optimization algorithms were employed to solve the bankroll allocation problem [6]:

e Sequential Least Squares Programming (SLSQP): An iterative method for constrained nonlinear
optimization that is efficient for problems with a moderate number of variables.

e Trust-Region Constrained Algorithm (trust-constr): Suitable for large-scale optimization prob-
lems, it handles large numbers of variables and constraints effectively.

The choice between SLSQP and trust-constr depends on the number of betting opportunities (matches)
considered at once. For a large number of matches, trust-constr is preferred due to its scalability.

5.3 Monte Carlo Simulations

To assess the performance of different investment strategies under simulated sports betting conditions, we
conducted Monte Carlo simulations modeling the inherent uncertainties. The goal was to evaluate how
various bankroll allocation strategies perform over numerous trials.

5.3.1 Simulation Setup

We simulated true match outcome probabilities r using a Dirichlet distribution appropriate for mutually
exclusive and collectively exhaustive events:

¥ = Dirichlet(a), o= (1,1,1)

To introduce discrepancies between true probabilities and those estimated by bookmakers (b) and players
(t), we added biases and normally distributed noise:

bf = Chp("ﬁ;C + biaspookmaker 1 €bookmaker, Min_prob, max,prob)
tf = clip(riC + biaspiayer + €player; Min_prob, max_prob)
where €pookmaker, €player ~ N (0, 0?). Probabilities were normalized to sum to one, and bookmaker proba-
bilities included a margin marging imaker> Clipping between min_prob and max_prob. Bookmaker odds were
calculated as:
k
k bj

?

(2 N .
(Zi:o bf) — Margiy,okmaker
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5.3.2 Simulation Procedure

The simulation followed a structured approach to evaluate the performance of different betting strategies,
using predefined constants and a series of steps to simulate match outcomes and bankroll updates.

Table 5.1: Simulation constants

Constant Value

H 30 Constant Bettor Bookmaker
T 50 bias 0 0
N 3 o (for noise €) 0.1 0.1
min_prob 0.05 margin 0.1

max_prob 0.95

1. Generated true probabilities r using bias = 0 and ¢ = 0.1 for both bettor and bookmaker.
2. Computed bookmaker and player estimates b and t.

3. Calculated bookmaker odds o.

4. For each strategy:

e Determined bet sizes using ¢ and o by performing optimisation using truct_constr algorithm.
e Simulated match outcomes based on 7.

e Updated bankrolls accordingly.

5.3.3 Evaluation Metrics

Strategies were evaluated using:
¢ Final Bankroll Statistics: Mean, standard deviation, median, minimum, and maximum.

e Average Growth Rate: Geometric mean per time step.

GGR = (JZ((S))) —1

e Sharpe Ratio: Risk-adjusted return.

o mxa RO _
Sharpe Ratio = W) with R(t) =

B(t+1) - B(t)
B(t)

e Probability of Ruin: Frequency of bankroll falling below a threshold.
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5.3.4 Results
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Figure 5.1: Monte carlo simulations for each strategy
Table 5.2: Final Bankroll Statistics
Strategy Mean Std Dev Median Min Max
Kelly Criterion 4.48 1.67 4.77  0.54 7.54
Log Utility 270.85 983.14 15.39 0.19 5414.01
Exponential Utility 7.46 3.46 8.10  0.00 13.48
Linear Utility 1.35 0.16 1.37  1.03 1.61
Expected Value 0.00 0.00 0.00  0.00 0.01
Naive Strategy 1.20 3.20 0.47  0.06 18.19

The Log Utility strategy achieved the highest mean final bankroll but with significant variability, indicating
high risk. The Kelly Criterion and Exponential Utility strategies demonstrated moderate returns with
lower variability, suggesting consistent performance.
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Table 5.3: Average Growth Rate Per Step

Strategy Growth Rate
Kelly Criterion 2.82%
Log Utility 5.54%
Exponential Utility 2.55%
Linear Utility 0.59%
Expected Value —29.83%
Naive Strategy —1.55%

While the Log Utility strategy had the highest growth rate, it came with increased volatility. The Kelly
Criterion and Exponential Utility strategies offered positive growth with better risk control.

Table 5.4: Sharpe Ratio

Strategy Sharpe Ratio
Kelly Criterion 0.30
Log Utility 0.29
Exponential Utility 0.25
Linear Utility 0.30
Expected Value 0.14
Naive Strategy 0.01

The highest Sharpe Ratios were achieved by the Kelly Criterion and Linear Utility strategies, indicating
superior risk-adjusted returns.

Table 5.5: Probability of Ruin

Strategy Probability
Kelly Criterion 0.00%
Log Utility 3.33%
Exponential Utility 6.67%
Linear Utility 0.00%
Expected Value 100.00%
Naive Strategy 20.00%

Zero probability of ruin for the Kelly Criterion and Linear Utility strategies underscores their robust-

ness.

An ANOVA test (performed to assess whether the differences in final bankrolls among the strategies), (F-
statistic: 2.16, p-value: 0.0612) suggested that differences among strategies were not statistically significant
at the 5% level. However, the p-value is close to the threshold, suggesting that with a larger sample size, the
differences might become statistically significant.

5.3.5 Conclusion

The simulations indicate that strategies like the Kelly Criterion and Exponential Utility, which balance
growth and risk through utility maximization, offer favorable outcomes. The Log Utility strategy provides
high growth potential but with greater volatility. Ignoring risk, as in the Expected Value strategy, leads

to poor performance.
Limitations include the limited number of simulations, simplified assumptions, and exclusion of real-world

factors like transaction costs.
Recommendations for future work involve increasing simulation runs, incorporating realistic market

conditions, and exploring additional strategies.
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5.4 Online Testing

To assess the strategies in a real-world environment, an online testing phase was conducted over five weeks,
from 2024 August 24th to 2024 September 30th, focusing on matches from the five major European football
leagues. This real-world testing evaluated the practical applicability and performance of the strategies under
actual market conditions. Odds were scraped each day at 12pm from the Odd Api website.

5.4.1 Static Problem Reduction and Parameter Settings

To simplify the dynamic nature of sports betting, we reduced the problem to a series of static optimizations
at discrete time intervals. At each decision point ¢, bankroll allocation was optimized based on the current
available information. This approach allowed us to manage the complexity of real-time betting while ensuring
the practical applicability of the strategies.

Temporal Parameters Key temporal parameters were defined as follows:

e Betting Interval (At): The interval between placing bets, set to 24 hours to capture daily betting
opportunities.

e Bet Placement Timing: Bets were placed at a fixed time each day (12:00 PM) to ensure up-to-date
information was used while accommodating market dynamics.

These settings ensured a balance between information accuracy and practical market conditions.

Match Selection The matches selected for each optimization were determined based on:

e Number of Matches (M): Matches occurring within the next 24 hours were selected, balancing
opportunity and reliability of information as well as having all results while perfomring next step.

e Selection Criteria: Focus was given to matches from top European leagues where the bettor had a
higher perceived edge.

This careful match selection helped reduce computational complexity while enhancing potential returns.

Re-Betting Policy The re-betting policy was defined by the following criteria:

e Not allowing Re-Bets: Additional bets on previously considered matches were not allowed. As we
only bet on matches on the same day and only once a day, this was an implication of the previous
choices.

This policy helped manage risk and adapt to evolving market conditions.

5.4.2 Practical Implementation Settings

The practical implementation settings for the online testing phase are summarized in Table 5.6. The testing
period ran from August 24, 2024, to September 30, 2024. The trust-constr algorithm was used for op-
timization, with a multiplier of v = % applied to the matrix f. The best odds from a pool of bookmakers
(detailed in the appendix) were selected for each match.

42



Table 5.6: Practical Implementation Settings

Setting Value

Betting Interval (At) 24 hours

Bet Placement Time 12:00 PM daily

Look-Ahead Horizon Matches within the next 24 hours
Re-Betting Policy Not allowed

Testing Period August 24, 2024 — September 30, 2024

Optimization Algorithm trust-constr

Strategy factor mult. v 0.5

Odds Selection Biggest odds from a pool of bookmakers
Markets 5 biggest European leagues (Big 5)

5.4.3 Results and Interpretation

Figure 5.2 illustrates the capital evolution for each strategy during the testing period. The Kelly and Ex-
ponential Utility strategies exhibited the strongest performance, both ending with approximately twice the
initial capital. These results highlight their ability to optimally balance risk and reward, consistently outper-
forming the more conservative Log and Naive strategies. However, they also demonstrated higher volatility
compared to the more stable Linear strategy.
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Figure 5.2: Capital Evolution for Each Strategy During the Online Testing Period

The Log Utility strategy underperformed, particularly at the start and after the midpoint of the test period,
failing to capitalize on high-return opportunities. Its conservative nature, aimed at minimizing risk, resulted
in modest growth but ultimately led to a negative outcome.

Both the Naive and Expected Value strategies experienced sharp declines in capital. The Naive strategy
approached near-zero capital by the end of the test, while the Expected Value strategy exhibited extreme
volatility, leading to rapid capital depletion. These simpler strategies, which lack sophisticated optimization,
were highly vulnerable to adverse market conditions and failed to adapt effectively to fluctuations in odds or
match outcomes.
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In contrast, the Linear Utility strategy showed steady and consistent growth, with minimal volatility
throughout the testing period, ultimately achieving a final growth of 1.8 times the initial capital. This high-
lights its effectiveness in maintaining a stable growth trajectory while avoiding the excessive risk associated
with other strategies.

Overall, the results underscore the superiority of more advanced utility-based strategies such as Kelly and
Linear. These approaches consistently outperformed simpler methods by balancing risk and reward more
effectively under real-world betting conditions.

5.4.4 Performance Metrics

To further quantify the performance of each strategy, we computed key metrics, including final bankroll
B(T), mean growth per step, and standard deviation of growth per step, both in absolute terms and as a
percentage of the final bankroll.

e The mean growth per step is defined as:
;| Tl
=— AB
H=r1 ; '

where ABt = Bt+1 - Bt,

e the standard deviation of growth per step is given by:

1 T-1

— _ 2

Table 5.7 summarizes the results for each strategy.

Table 5.7: Strategy Performance Metrics

Strategy Final Bankroll B(T) Mean Growth (%) Std Growth (%)
Kelly Criterion 2.034 2.034 8.923

Log Utility 0.653 2.129 26.516
Exponential Utility (« =1) 1.892 1.886 10.309

Linear Utility (A = 10) 1.798 1.776 5.360

Naive Strategy 0.141 -24.299 52.419

Expected Value 0.001 -5032.448 18175.649

5.4.5 Interpretation of Metrics

The results demonstrate the effectiveness of the Kelly Criterion and Exponential Utility strategies, both of
which ended with a final bankroll close to 2.0. These strategies also displayed reasonable volatility, with
standard deviations of growth per step under 10%. The Linear Utility strategy performed consistently,
achieving steady growth with the lowest volatility among all strategies.

On the other hand, the Log Utility strategy suffered from negative growth, highlighting its inability to
capitalize on high-return opportunities. The Naive and Expected Value strategies performed poorly, with
significant capital depletion and extreme volatility, particularly for the Expected Value approach, indicating
their inadequacy in real-world betting scenarios.

5.5 Conclusion

The results from both the Monte Carlo simulations and the real-world online testing phase demonstrate the
clear advantages of sophisticated bankroll management strategies such as the Kelly Criterion and Exponential
Utility methods. These strategies consistently provided strong returns while managing risk effectively, leading
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to a final bankroll close to twice the initial amount. In contrast, simpler strategies like the Naive and
Expected Value approaches underperformed, suffering from capital depletion and high volatility, emphasizing
the importance of balancing risk and return in real-world betting scenarios.

The Linear Utility strategy offered a steady, reliable growth trajectory with minimal volatility, making it
an appealing option for risk-averse bettors. The Log Utility strategy, though conservative, failed to capture
sufficient growth opportunities, resulting in a negative final outcome. Overall, the Kelly and Exponential
Utility strategies are best suited for bettors seeking long-term growth with manageable risk.

5.5.1 Limitations and Future Improvements

Despite the promising results, several limitations were identified in the current approach:

e Simulation Assumptions: The Monte Carlo simulations relied on several simplifying assumptions
that limit the realism of the results. Firstly, the simulation of probabilities was based on the true
clipped probabilities plus a bias and Gaussian noise, which does not fully capture the actual flaws
in the predictive models, and the constants used were chosen arbitrarily without strong justification.
Secondly, the bookmaker margin was fixed, and the odds provided by the bookmaker did not account for
the influence of large bets from the players, which in reality could cause deviations in the bookmaker’s
odds and probabilities. Lastly, the simulations used a fixed number of matches and time steps. Both
the number of simulations and the range of strategies could be expanded to provide a more thorough
and diverse analysis of performance over a wider variety of scenarios.

e Limited Testing Period: The online testing phase covered only a five-week period, which may not
fully capture the long-term performance and robustness of each strategy. Extending the testing period
or repeating it across multiple seasons would provide a more comprehensive assessment.

e Risk Preferences: While the utility-based strategies successfully managed risk, the models relied on
fixed parameters for risk aversion (e.g., A in Linear Utility). Introducing dynamic adjustments to these
parameters based on market conditions or bettor preferences could further enhance performance.

5.5.2 Future Work and Deployment on Azure Kubernetes

The next stage of this project involves deploying the entire system on a cloud infrastructure using Kuber-
netes on Azure (AKS). This deployment will enable scalable, real-time processing of betting opportunities,
continuous model updates, and the handling of multiple simultaneous users and markets. By leveraging
Azure’s powerful compute and orchestration capabilities, the system will be capable of efficiently managing
the computational load and data flows needed for real-time sports betting optimization.
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Chapter 6

Development of the Complete System
and Production Deployment

6.1

Microservices Architecture and Frameworks

To build a scalable and maintainable system for sports betting optimization, we adopted a microservices archi-
tecture. This approach allows independent development, deployment, and scaling of individual components,
facilitating modularity and flexibility.

The system comprises several microservices:

Data Ingestion Service: Collects real-time match data and odds from external APIs and web scrap-
ing. We use the Python library soccerdata to conveniently scrape historical and real-time data from
various websites. SQLAlchemy is employed to communicate with the PostgreSQL database, allowing
interaction using a mix of Python syntax and SQL queries. An API is provided for other services to
trigger this service’s logic, created using the FastA PI framework. The Python library logging is used
for proper logging of all operations, and pandas is utilized for data manipulation and transformation.

Prediction and Optimization Service: Processes data to train models and generate probability
estimates for the prediction component. Calculates optimal bet allocations based on the probabilities
and selected strategies for the optimization component. Scikit-learn is used for model training and
inference, while SciPy.optimize handles the optimization processes. Similar to the Data Ingestion
Service, an API is deployed using FastA PI, with communication to the database via SQLAlchemy, and
logging and pandas for logging and data handling.

User Interface Service: Provides a web-based dashboard for monitoring and interaction, developed
using the Python web framework Streamlit.

Backend Service: Manages communication and logic between the frontend User Interface and the
database, as well as other services, using FastAPI, pandas, and logging.

Database Service: Stores historical data, odds, inferred probabilities, optimization results, and trans-
action logs. We chose PostgreSQL as the database due to its robustness, scalability, and compatibility
with SQLAlchemy. PostgreSQL’s advanced features support complex queries and transactions essential
for our application’s needs.

MLflow Service: Monitors the training metrics of the models. MLflow provides a convenient way
to track experiments, record model parameters, metrics, and artifacts, facilitating reproducibility and
model versioning.

Airflow Service: Acts as a scheduler, providing a convenient way to orchestrate and monitor complex
workflows using Directed Acyclic Graphs (DAGs). Apache Airflow allows us to define data pipelines,
schedule tasks, and manage dependencies between them, ensuring timely execution of data ingestion,
model training, and optimization processes.
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Services communicate over HTTP/HTTPS protocols, with well-defined APT endpoints ensuring loose cou-
pling and ease of integration.

6.2 Docker and Kubernetes

To ensure consistency across development, testing, and production environments, all microservices are con-
tainerized using Docker [21]. Docker allows us to package each service with all its dependencies into isolated
containers, ensuring consistent behavior across different environments.

6.2.1 Dockerization

Each microservice is encapsulated in a Docker container, defined by its own Dockerfile, which specifies the
base image, dependencies, and entry points. In local development, we used containers for services such as
MLflow, PostgreSQL, and Airflow, facilitating a consistent and reproducible environment.

6.2.2 Kubernetes Deployment

For orchestration and management of the containerized applications, we utilized Kubernetes [15]. Kubernetes
automates deployment, scaling, and management of containerized applications. We packaged our system into
a Helm chart, which simplifies the deployment of the entire application, including dependencies like MLflow,
PostgreSQL, and Airflow.

Helm Chart Packaging

By encapsulating our services and their dependencies into a Helm chart, we streamlined the deployment
process. Helm charts define, install, and upgrade complex Kubernetes applications, allowing us to manage
configurations and versioning efficiently.

Database Migrations

Database schema changes are managed using migration files and scripts. Changes are first applied locally
for testing and validation. Once validated, migrations are executed on the production database using scripts
designed to apply changes incrementally. This process ensures that the database schema remains synchronized
with the application code without disrupting ongoing operations.

6.3 Deployment on Azure AKS

6.3.1 Azure Kubernetes Service (AKS)

We deployed our Kubernetes cluster on Microsoft Azure using Azure Kubernetes Service (AKS), a managed
Kubernetes service that simplifies cluster management by handling critical tasks like health monitoring
and maintenance. AKS reduces the operational overhead and provides features like automated scaling and
updates.
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Figure 6.1: Architecture of the system deployed on AKS

6.3.2 Infrastructure Details

Our AKS deployment utilizes two virtual machines to ensure high availability and load balancing across the
cluster. While Azure offers its own virtual machines, in this context, we refer to the compute resources
allocated to our Kubernetes nodes. The integration with AKS allows for efficient resource utilization and
scalability.

6.3.3 Azure Services Integration

Using Azure’s cloud infrastructure offers several benefits:

e Azure Container Registry (ACR): Stores our Docker images securely, facilitating seamless deploy-
ment to AKS.

e Azure DevOps Repo: Provides a storage for our code.

6.3.4 Pricing Considerations

Azure’s pricing model charges for compute resources used by virtual machines, storage, and network band-
width. Managed services like AKS can reduce operational overhead but require careful monitoring to manage
costs effectively. We optimized resource allocation by:

6.4 Conclusion
By adopting a microservices architecture, containerization with Docker, orchestration with Kubernetes, and

deploying on Azure AKS, we built a scalable, reliable, and maintainable system for sports betting optimiza-
tion. This architecture allows for independent development and deployment of components, ensuring the
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system can adapt to changing requirements and handle real-time data processing demands efficiently. Lever-
aging cloud infrastructure and managed services enhances our ability to focus on core application development
while ensuring high availability and performance.

49



Chapter 7

Discussion and Conclusion

7.1 Summary of Findings

This study embarked on the ambitious task of developing a comprehensive system for optimizing sports
betting strategies, focusing on football matches. Through the integration of predictive modeling, utility-
based optimization, and scalable system architecture, we have addressed the critical components necessary
for successful sports betting.

The predictive model, developed using logistic regression and advanced feature selection techniques, demon-
strated significant accuracy in forecasting match outcomes. Regular retraining of the model proved essential
in maintaining performance over time, highlighting the dynamic nature of sports data.

The optimization module applied various bankroll allocation strategies, including the Kelly Criterion, loga-
rithmic, exponential, and linear utility functions. Both Monte Carlo simulations and real-world online testing
over a five-week period indicated that sophisticated utility-based strategies substantially outperform naive
betting approaches. Strategies like the Kelly Criterion and Exponential Utility provided favorable returns
while effectively managing risk.

The system’s deployment on Azure Kubernetes Service (AKS) showcased its scalability and readiness
for real-time application. By leveraging a microservices architecture and containerization technologies like
Docker and Kubernetes, the system can handle the computational demands of real-time data processing and
optimization.

7.2 Contributions to the Field

This work contributes to the field of sports analytics and betting strategies in several ways:

e Integration of Predictive Modeling and Optimization: By combining accurate probability esti-
mations with utility-based optimization strategies, the system provides a robust framework for sports
betting.

e Scalable System Architecture: The implementation of a microservices architecture and deployment
on cloud infrastructure ensures that the system is scalable, maintainable, and adaptable to real-world
conditions.

e Empirical Evaluation: The use of both simulations and real-world testing provides empirical evidence
of the effectiveness of advanced betting strategies over simpler methods.

7.3 Limitations
Despite the positive results, several limitations were identified:

e Predictive Model Enhancements: While the current model performs adequately within the con-
straints of a static framework, it could be significantly improved by incorporating additional features,
conducting hyperparameter optimization, and exploring more complex models such as deep learning
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architectures. These enhancements would allow the model to capture dynamic patterns and temporal
dependencies inherent in football matches, which are not fully addressed due to the static nature of the
current framework.

e Static Framework Limitations and Long-Term Gain-Variance Interpretation: The reduction
of the betting problem to a static framework simplifies the optimization process but introduces limi-
tations in interpreting gains and variance over the long term. Since the model does not account for
intertemporal dependencies and the evolving nature of the bankroll, the strategies derived may not fully
capture the risks associated with long-term betting. This static approach may lead to strategies that
optimize short-term gains without adequately considering the cumulative effect on wealth over time.
Future work should focus on extending the framework to a dynamic setting, allowing for a more accu-
rate interpretation of long-term gain and variance, and better aligning the strategies with the bettor’s
long-term financial goals.

e Risk Preferences and Dynamic Adaptation: The optimization strategies employed fixed param-
eters for risk aversion, which do not adjust to changes in the bettor’s wealth or market conditions over
time. This static treatment of risk preferences limits the adaptability of the betting strategies, espe-
cially in a long-term context where the bettor’s financial situation and the market dynamics can vary
significantly. Introducing dynamic risk preferences that evolve with the bettor’s bankroll and external
factors would enhance the strategies’ responsiveness and effectiveness, leading to better management
of gain and variance over the long term.

e Testing Period and Scope: The real-world testing was confined to a five-week period focusing on the
top five European leagues. Due to the static framework and the short testing duration, the evaluation
may not fully reflect the strategies’ performance over extended periods or in different market conditions.
A longer testing period encompassing a broader range of leagues and varying competitive environments
would provide more comprehensive insights into the strategies’ long-term viability and their ability to
manage gains and risks effectively within a dynamic setting.

7.4 Future Work

Building upon the findings of this study, several promising avenues can be explored to enhance the system’s
performance and address the challenges identified.

Firstly, integrating real-time data streams and developing adaptive predictive models could significantly
improve forecasting accuracy. By incorporating techniques from time-series analysis and machine learning,
the model can capture temporal dependencies and evolving patterns inherent in football matches. This
dynamic approach would allow the model to adjust to new information promptly, potentially leading to more
accurate probability estimates and better alignment with the actual match outcomes.

Secondly, advancing the optimization strategies to include stochastic elements and multi-period planning
could address the complexities associated with long-term gain and variance interpretation. Developing a
dynamic framework that accounts for intertemporal dependencies and the evolving nature of the bankroll
would enable more effective risk management. Strategies that adapt risk preferences in response to changes
in the bettor’s financial status or market conditions could lead to more sustainable betting practices and
improved long-term financial outcomes.

Thirdly, conducting extensive real-world testing over longer periods and across a broader range of leagues
and competitions would provide deeper insights into the robustness and generalizability of the betting strate-
gies. Such testing would help to evaluate the performance of the models under varying market conditions
and competitive environments, ensuring that the strategies remain effective over time and are not limited to
specific contexts or short-term scenarios.

Finally, enhancing the user interface to offer more advanced analytics and personalized insights could em-
power users to make more informed decisions. Features that allow users to visualize performance trends,
adjust parameters interactively, and receive tailored recommendations would improve the overall user expe-
rience. Providing tools for long-term performance monitoring and strategic adjustments would enable users
to better understand the implications of their betting decisions and manage their bankrolls more effectively.

These potential developments represent initial steps toward refining the system’s capabilities. By focusing
on dynamic modeling, adaptive optimization, comprehensive testing, and user-centric design, future work can
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contribute to more robust predictive performance, effective risk management, and ultimately, more successful
sports betting strategies.

7.5 Final Remarks

The integration of predictive modeling and utility-based optimization represents a significant step forward
in developing effective sports betting strategies. This work demonstrates that with accurate predictions and
strategic bankroll management, it is possible to achieve superior returns while managing risk effectively. The
deployment on cloud infrastructure ensures that the system is ready for practical application, paving the way
for future advancements in the field.
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Appendix A

List of Notations

A.1 General Notations

t € RT: Time.

M(t) = {m',;m?,...,mM®}. Set of matches available for betting at time ¢.
M (t) € N: Total number of matches available at time ¢.

mF € M(t): A specific match k.

OF = {wf,wh, ... ,wh}: Set of possible outcomes for match mF.

N* € N: Number of possible outcomes for match mF.

wk: Outcome i of match m*.

A.2 Probabilities of Outcomes

k

%

ocecurs for match m* at time ¢.
k

%

Py (wF): Probability that outcome w
r¥(t) = Py (wF): Probability of outcome wf occurring at time t.

XF: Random variable indicating whether outcome w” occurs:

1, if outcome wf occurs,

Xk =
! 0, otherwise.

A.3 Bettors and Bookmakers

J: Set of bettors.
B: Set of bookmakers.
By o:(t): Bankroll of bettor J at time t.

BE naker (1): Bankroll of bookmaker B at time ¢.

A.4 Odds

OF(B,t) = {0y (t),05 (), ..., 02 (t)}: Set of odds offered by bookmaker B for match m” at time t.

k,B

0;

(t): Odds offered by bookmaker B for outcome w¥ of match m*.
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A.5 Bets and Wagers

fik"](t): Fraction of bettor .J’s bankroll wagered on outcome w¥ at time t.
bf"](t): Bookmaker with whom bettor J places the bet on outcome w? at time t.

wh (t) = 77 (t) x BY,,..(t): Amount wagered by bettor J on outcome w¥ at time ¢.

K2 (2

A.6 Bankroll Evolution

B 1164(T): Set of bets settled for bettor J at time 7.
G{ i10r(b): Gain or loss from bet b for bettor J:

Giettor(b) = w” (b) x (07 (b) x X (b) — 1)

w?(b): Amount wagered on bet b.
0B (b): Odds offered by bookmaker B for bet b.
X (b): Indicator variable for whether bet b wins.

A.7 Bookmaker’s Gain

J: Set of bettors placing bets with bookmaker B.
GE (b): Gain or loss for bookmaker B from bet b:

bookmaker

Gl?ookmaker(b) = wJ(b) X (1 - OB(b) X X(b))

A.8 Bankroll Factors

J — Bl;]ettox-(t) .
BF oo (t) = 55 OF Bankroll factor for bettor J.

bettor )

BFE | er(t) = g%Lﬁk“(g: Bankroll factor for bookmaker B.

bookmaker

A.9 Gain Calculation

Ggettor (t) = Bfa]ettor(t) - Bl;]ettor(o) = Bgettor (0) (BFB]ettor(t) - 1): Gain for bettor J
Gl?ookmakcr (t) = BbBookmakcr (t) - BbBookmakcr(O) = BbBookmakcr (0) (BFl)iokmakcr (t) - 1) Gain fOI‘ bookmaker B.

A.10 Utility Functions

U(B): Utility function for wealth B.
Expected value utility: U(B) = B.
Logarithmic utility: U(B) = In(B).

Power utility: U(B) = ?1__;7 v# 1L

Exponential utility: U(B) = —e~ 5.

. o1 . _ A
Quadratic utility: U(B) = B — §B2.
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A.11 Agent’s State Space
S(t): State of the betting market at time ¢:
S(t) = (M(t), Q(t)7 ©(t)7 Bbettor(t)v Bbookmaker(t)v H(t),I(t))

H(t): History of past events.

Z(t): Additional information available to agents at time t.

A.12 Action Space

AJ

bettor
AB ke (D)t Action of bookmaker B at time ¢, setting odds of (¢).

(t): Action of bettor J at time ¢, choosing f¥ values.

A.13 Transition Dynamics

= ®(S(t), Avettor (t); Abookmaker (t), €(t)): Transition function.

A.14 Policies

7 iop: Policy for bettor J, mapping states to actions.

T8 maker: Policy for bookmaker B, mapping states to actions.
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Appendix B

Analytical Solution Using the Kelly
Criterion

B.1 Derivation of the Optimal Betting Fraction

The bettor seeks to maximize:
{ Igl?(}i)} Ep’ [ln (Bbettor(t + 1))]

Since:

Bl{ettor(t + 1) = Bl{ettor(t) + Ggettor (t)
and the gain is:

M NF*

chttor Bbottor Z Z fk ! ( Xk )

k=1 1i=1

we can write:

M N*
ln (Bgcttor(t—’— 1)) = 11’1 (Bi)]cttor +1H (1+ZkaJ ( Xk ))

k=11i=1

Assuming that the fractions fik"](t) are small, we can approximate the logarithm using a Taylor expansion

around O:
52

Applying this approximation:

AQ
In (Bi)]ettor (t + 1)) ~ In (Bi)]ettor(t)) +A - 7
where:
M N*
A= szk I ( )Xk - )
k=1 1i=1

Taking the expectation with respect to the bettor’s estimated probabilities pf"]

]EPJ [hl (Bgettor(t + 1))] ~ hl (Bgettor(t)) + Ep" [A] - %Ep‘] [Az]
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Computing the expected value and variance:

M NF

By [A] =33 70 (o Pl 1)
k=11:=1
E,s [A%] = (E,s [A])® + Var,s (A)
Thus:

1 2
Eps [I0 (Biegtor (4 1))] % In (Bilegser(t)) + Epo [A] = 5 ((EPJ [A))® + Var,, (A))
Since (E,. [A])2 is typically small compared to the variance term, we can focus on maximizing:

1
EPJ [A] — §Varp1 (A)

This shows that the bettor’s optimization involves a trade-off between expected return and risk, both of
which depend on the estimated probabilities pf"].

B.2 Optimal Betting Fraction

By taking the derivative with respect to fik’J(t) and setting it to zero:

9 1
m (]EPJ [A] — §Varp1 (A)) =0

After calculation, the optimal fraction is:
kB o\ k,J
(oi )y — 1)

o) -1

This is the classical Kelly formula, showing that the optimal betting fraction depends on:

e The bettor’s estimated probability pf"].

e The odds offered of’B(t).
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Appendix C

Analytical Reduction of E|ln(B)

C.1 Problem Setup

The bettor aims to maximize the expected logarithmic utility of their bankroll:

T Ikn?a()i)}E pJ [ln (Bbettor(t + 1))]

where:
Bi)lettor(t + 1) = Bi)]ettor(t) X BF(t + 1)
The bankroll factor BF(¢ + 1) is given by:

M N*
BE(t+1) =1+ /57 ( )X’“—l)
k=1 1i=1
However, this can be reformulated as:
M N*
BF(t+ 1) = O+ > e ) xk
k=1 1i=1

where:
M NE kT - .
F(t) = 4_1 > =1 [i 7 (t) is the total fraction of the bankroll bet.
In this context, the expected value of the logarithmic utility of the future bankroll is:

EpJ [ln (Bk{ettor(t + 1))] = lIl (Bk{ettor(t)) + ]Ep‘] [ln (BF(t + 1))]
Our goal is to compute E,s [In (BF(t 4 1))] without any approximations.

C.2 Expected Value of the Logarithm of the Bankroll Factor

Given that the matches are independent and the outcomes within each match are mutually exclusive, we can
consider the bankroll factor as the product of the individual match factors.

For each match k: The bankroll factor for match k is:

Nk
BF,=1-F+ Y £ )o](t) X}

i=1

where:
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o [}, = Zf\i ff /(1) is the fraction of the bankroll wagered on match k.
e X is arandom variable that indicates whether outcome i of match k occurs (X¥ = 1) or not (X} = 0).

Since only one outcome occurs for each match, we can write BF, for match k as:

BF, = 1 — Fy + f27 ()05 (1)

where ¢* is the realized outcome of match k.

Total Bankroll Factor: Since matches are independent, the total bankroll factor is the product of the
factors of each match:

M
+1) = [ BF«
k=1

C.3 Expected Logarithm of the Bankroll Factor

The expected value of the logarithm of the total bankroll factor is:

M
E,s [In (BE(t 4+ 1))] = 3B, [In (BF)
k=1

For a single match k: For each match k, the expectation is:

E, [In (BFy)] pr T (1= Fe+ £ 00l (1)

where pf"] is the bettor’s estimated probability for outcome i of match k.

C.4 Final Expression for the Expected Logarithm of the Future
Bankroll

Combining the expressions for all matches, we obtain:

By {10 (Bicaor (t+1))] = 1 (Bierior (8 +Z Zpi”ln (1= At s 0ok )

This expression makes no assumption about the smallness of the betting fractions ff"](t) or the return
factor, and is therefore exact.

C.5 Optimization Without Approximation
The bettor must solve the following optimization problem:
M | N

ke, J ko 4\ kB
max p;" In(1—Fp+ f77(t)o; " (1)
PO} et ; ( )

subject to the constraints:
o f77(t) € 10,1] for all i, k.
o [} = Zi]\fl fik"](t) <1 for all k

° Ziw:le <1
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C.6 Example of Simplification
To illustrate this method, consider a match & with two possible outcomes (e.g., win or loss):
e Outcomes: i =1,2
e Estimated probabilities: plf"], pg"]
e Betting fractions: f1"7(t), /27 (t)
e Odds: o} (t), o5 (1)
o Fo= 500+ 107 0)
The expected logarithm of the return factor for this match is:
Eys [ (BFW)] = pi In (1= Fi+ £/ (0082 @) + 057 In (1= B+ 57 (005" (1))
The bettor must choose f*/(t) and f4”/(t) to maximize this expression, subject to the constraints:
o f17(t)
o f37(1)

o f1(1)

Y

0

0

v

5 <1

_|_

C.7 Numerical Optimization

This optimization can be solved analytically in some simple cases, or more generally using numerical methods
such as nonlinear optimization algorithms (e.g., Newton-Raphson, gradient-based methods).

C.8 The Role of Estimated Probabilities

The estimated probabilities pf"] directly influence the expected logarithm of the return factor. A higher
estimated probability for a particular outcome increases the weight of the logarithmic return factor associated
with that outcome in the overall expectation. Thus, the bettor is incentivized to bet more on outcomes they
believe are more likely to occur, while considering the offered odds.

C.9 Conclusion
In conclusion, it is entirely possible to analytically compute E,s [In (B, (t +1))] without assuming that

the return factor is small. This allows the bettor to optimize their betting strategy by fully considering the
impact of each wager on their future bankroll, without approximation.

60



Appendix D

Analytical Reduction Using the
Exponential Utility Function

To further illustrate how estimated probabilities influence the optimization problem, consider the case where
the bettor uses an exponential utility function:

UB)=—e B

where « > 0 is the coefficient of absolute risk aversion (CARA). This utility function represents a bettor
whose absolute risk aversion remains constant regardless of wealth level.

D.1 Derivation of the Optimal Betting Fraction

The bettor seeks to maximize the expected utility:

J
T I’CII?();)}E pJ [U (Bbettor(t + 1))]

Substituting By ,.(t + 1) = B ...(t) + G{ 110, (1), we have:

By (U (Beson(t + 1))] = By [ e (Pl 060

P

Since B{l,...(t) is constant with respect to the expectation, we can factor out e~ Biottor (1)
]EPJ [U (Blt)]ettor(t + 1))] = 7€7aBgCtt0T(t)]EpJ [eiachttor(t)}

The gain Gt{ettor(t) is given by:

M NF

Ggettor( Bbettor Z Z fk 7 ( PP )XZk - 1)

k=11i=1
Substituting this expression into the expected utility:

Ep‘] [U (Bgettor(t + 1))] = _e_aBl{ettor(t)]EpJ [e_aBliettor(t) chw=1 ZfV:kl ff"](t)(of’B(t)Xf—l)]

Simplify the exponent:

M NF M
E, J k, J
_aBbJettor Z Z f ( )Xk 1) = —OéBb‘]ettor Z Z f Xk — F(t)
k=11i=1 k=1 \i=1

where F(t) = 22/[:1 Zfikl fzk‘](t) is the total fraction of the bankroll wagered.
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We can rewrite the exponent as:

M
_aBbJettor(t) (Z Ry, — F(t)>

k=1
.
where Ry, = Zil I ()0 B (1) XF represents the return from match k.

Thus, the expected utility becomes:

]EpJ [U (Bgettor(t + ]_))] e —e_aBliettor(t)eaBgettor(t)F(t)EpJ |:e_O‘BlIJIettor(t) Zlszl Rk}

Since the matches are independent and the outcomes within each match are mutually exclusive, we can
factor the expectation:

M
EpJ [e_aBget“’r(t) Eﬁ/f:l Rk:| = H Ep.l I:e_aBgettor(t)Rk}
k=1

For each match k, the expectation over the outcomes is:
Nk
E,; [efasgm@)m] -y et AN OT R O O]
K3
1=1

Combining these results, the expected utility simplifies to:

Nk

M
By [U (Bior(t +1))] = —e=Brauar 00=FO) T P e 0Bl (D7 (00F B (1)
k=1 1

i=

The bettor’s objective is to choose the fractions fik"](t) that maximize this expected utility. However, since
the utility function is negative, maximizing the expected utility is equivalent to minimizing:

M [ NF
[ = ¢~ Biletror () (1=F(2)) H Z P e Biletnor OF7 (B)07 (1)
1
k=1 i=1

To simplify the optimization, we can take the natural logarithm and consider the negative of the expected
utility (since the exponential utility function is negative):

. 7
{f}{l}l(lt)} —In (—EPJ [U (Bbettor(t + 1))})

Computing the logarithm:

M N*
—In (_]EPJ [U (Bf),ettor(t + 1))]) = OéBB]enor(t)(l —F(t)) — Z In pf,Je—aBi,,ettor(t)ff‘J(t)oi'c’B(t)
k=1

i=1

The bettor’s optimization problem reduces to minimizing this expression with respect to { fik"](t)}.

D.2 Certainty Equivalent Interpretation

Alternatively, we can interpret the optimization in terms of the certainty equivalent C'E, which satisfies:

U(CE) =Eps [U (Bileyor(t +1))]

Using the exponential utility function:

—emoCE — _=0Blawn O, [efaczmm]
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Simplifying:
e=oCE = ¢=oBiawn O, , [efacg’mm]

Therefore:

CE = Bl (t) — éln (]EpJ [e—aGifemr(t)D

Using the previous results, the certainty equivalent becomes:

M Nk

CE = Bi)]ettor(t) _ l In 6a31;’ettor(t)F(t) H Zp’?vJe*OéBi,’emr(t)ff"’(t)Of'B(t)
a k=1 =1

Simplifying the logarithm:

M N*
1 .
CE = Bigion(t) = BlouorF(H) = = >t | 37 pl e Becer 045 (0170
o
k=1 i=1

This expression shows that the certainty equivalent depends on:

e The initial bankroll B ., . (t).

The total fraction wagered F'(t).

The estimated probabilities pf"].

The odds of’B (t).

The betting fractions fik"](t).

e The risk aversion parameter a.

D.3 Optimization Problem

The bettor’s optimization problem is to choose { fik"](t)} to maximize the certainty equivalent CE:
1 M N J koJ N kB
max { OF = Blyor()(1 = F(1) — = 3 In [ 37 plemoBlaeor 57 (00" 1)
EO) Y= =
Subject to the constraints:

e Non-negativity: fik"](t) >0 for all 4, k.

e Budget constraint: F(t) = Y o, Zf\fl ) <1

D.4 Role of Estimated Probabilities

The estimated probabilities pf"] enter the optimization problem explicitly in the logarithmic terms of the
certainty equivalent. They affect the expected utility by weighting the potential outcomes according to the
bettor’s beliefs.

A higher estimated probability pf"] for a particular outcome increases the weight of the term e~ Biewor I (D077 (1)

in the logarithm. This, in turn, influences the optimal betting fraction fik’J(t) assigned to that outcome.
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D.5 Interpretation

The exponential utility function leads to an optimization that balances the expected returns against the risk,
adjusted for the bettor’s absolute risk aversion a. The bettor allocates their bets to maximize the certainty
equivalent, effectively trading off potential gains against the disutility of risk.

The presence of « in the exponentials and logarithms quantifies the bettor’s sensitivity to risk. A higher «
implies greater risk aversion, leading the bettor to wager smaller fractions fZC ’J(t).

D.6 Conclusion

Using the exponential utility function demonstrates how estimated probabilities pf"’ influence the bettor’s
optimal strategy. The optimization problem incorporates these probabilities directly, affecting the allocation
of bets across different outcomes and matches. The bettor must consider both their beliefs about the likelihood
of outcomes and their risk preferences to determine the optimal betting fractions.

This analytical solution provides insight into the interplay between estimated probabilities, risk aversion,
and optimal betting strategies under constant absolute risk aversion.
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Appendix E

Derivation of the linear Objective
Function

This appendix provides a formal derivation of the objective function F(B) — A - Var(B) from a quadratic
utility function.

E.1 Quadratic Utility Function

Consider a quadratic utility function of the form:

U(B)=DB - 332

where B is the wealth (or bankroll), and A is a constant representing the individual’s risk aversion. The
function is concave, capturing the notion of diminishing marginal utility and aversion to risk.

E.2 Expected Utility

The expected utility is given by:
E[U(B) =E {B - 232] = E[B] — %E[BQ]
The term E[B?] can be expressed as:

E[B? = Var(B) + E(B)?

Substituting this into the expression for expected utility:

E[U(B)] = E[B] — % (Var(B) + E(B)?)

E.3 Simplification of the Objective Function

Expanding the expression:

E[U(B)] = E[B] — %Var(B) - %E(B)Q

To simplify, we assume that the term %E(B)2 is small enough to be negligible, or we focus on cases where
the effect of the variance is more significant. Therefore, the expected utility becomes:

A
E[U(B)] ~ E(B) — §Var(B)
Multiplying the entire expression by 2 (to match the typical form of the objective function):

E[U(B)] ~ E(B) — A - Var(B)
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E.4 Conclusion
Thus, the objective function E(B) — A - Var(B) can be derived from a quadratic utility function, where A

represents the individual’s degree of risk aversion. This form is widely used in decision theory and finance to
model the trade-off between expected return and risk (variance).
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Appendix F

Predictive model Metrics

Classic classification metrics offer foundational insights into model performance. However, their effectiveness
can be limited in the presence of class imbalance. The following metrics are defined mathematically to
facilitate precise evaluation:

« F.1 Accuracy

Accuracy measures the proportion of correctly predicted instances out of the total instances. It is
defined as:

TP+TN

A -
CCWAY = TP LITN + FP + FN

where:

— T'P: True Positives (correctly predicted positive instances),
— T'N: True Negatives (correctly predicted negative instances),
— FP: False Positives (incorrectly predicted positive instances),
— F'N: False Negatives (incorrectly predicted negative instances).
This overall accuracy is simple and intuitive, making it widely used. However, it may not provide a full

picture in cases of class imbalance, as the performance on majority classes can dominate the overall
score.

Accuracy by Class can be defined to better understand how the model performs on each class
individually. For class ¢, the accuracy is:

TP +TN;
TP, + TN, + FP; + FN;

Accuracy,; =

This metric is particularly useful when dealing with imbalanced datasets or when certain classes are
more important than others. It allows for an in-depth evaluation of how well the model performs across
different categories, helping to identify underperforming classes.

e F.2 Precision

Precision for a given class is the ratio of correctly predicted positive observations to the total pre-
dicted positives. For class i, it is defined as:
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TP

PreCiSiOni = m

In multi-class classification problems, precision can be computed in different ways depending on how
the classes are aggregated:

— Micro-averaged Precision: This metric calculates the precision by aggregating the true posi-
tives and false positives across all classes, treating them as a single combined class. It is particularly
useful when the dataset is balanced or in multi-label problems. The micro-averaged precision is
defined as: N

Ei:l TP

SN (TP, + FP)

Precision,,icro =

— Macro-averaged Precision: In this approach, the precision is calculated for each class individ-
ually, and the unweighted average of these precisions is taken. It is useful when you want to treat
each class equally, regardless of class size, and is often applied in imbalanced datasets to ensure
fair evaluation. The macro-averaged precision is given by:

N
.. 1 ..
Precision,,,gcro = N E Precision;
=1

— Weighted Precision: This is the weighted average of the precision scores for each class, with
the weight being proportional to the number of instances in each class. It provides a more bal-
anced view when the class distribution is highly imbalanced, as it gives more importance to the
performance on the majority classes. The weighted precision is defined as:

N
Precisioneighted = g w; - Precision;
i=1

Number of examples in class 7
Total number of examples

where w; =

« .3 Recall

Recall (also known as Sensitivity) for a given class is the ratio of correctly predicted positive observa-
tions to all actual positives. For class 4, it is defined as:

TF;
="
Recall; TP 1 FN,
Similar to precision, recall can be aggregated in multiple ways for multi-class classification:

— Micro-averaged Recall: Aggregates the true positives and false negatives across all classes and
calculates the recall as if the problem were binary. This approach is useful for optimizing the
overall recall across all classes. The micro-averaged recall is defined as:

Y, TP,
SN (TP, + FN;)

Recall,icro =

— Macro-averaged Recall: Computes the recall for each class and then takes the unweighted
average across all classes. It is helpful when you want to treat each class equally, regardless of
the class distribution. This is particularly useful in imbalanced datasets where recall for minority
classes is critical. The macro-averaged recall is given by:

1
Recall,acro = ~ Zl Recall;
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— Weighted Recall: This metric calculates the recall for each class and then computes the weighted
average, with the weights proportional to the size of each class. It is effective in imbalanced datasets
where the goal is to ensure better recall for major classes. The weighted recall is defined as:

N
Recallyeighted = Z w; - Recall;

=1

Number of examples in class 7
Total number of examples

where w; =

e« F.4 F1-Score

The F1l-score is a metric that combines both precision and recall into a single measure. It is
particularly useful in scenarios where a balance between precision and recall is needed, especially when
there is an uneven class distribution. The F1-score is defined as the harmonic mean of precision and
recall:

Fl—9 Precision - Recall

" Precision + Recall

In multi-class or multi-label classification, different versions of the F1-score can be computed depending
on how the performance across classes is aggregated:

— Per-class Fl-score: The Fl-score can be computed for each class individually without averaging.
This gives insight into how the model performs on specific classes.

Precision; - Recall;

F1,=2-
! Precision; + Recall;

— Micro-averaged F1l-score: The micro Fl-score is calculated by aggregating the true positives,
false positives, and false negatives across all classes and then computing the Fl-score from these
totals. This treats all classes as a single combined class, ignoring class distributions.

N
5. 2= TP
SN (2-TP, + FP, + FN;)

Flmicro =

— Macro-averaged F1-score: The macro Fl-score computes the Fl-score for each class individu-
ally and then takes the unweighted average of these scores. Each class is treated equally, regardless
of its size.

1 N
Fluacro = N ;Flz

— Weighted F1-score: The weighted F1-score calculates the F1-score for each class and then takes
the weighted average, where the weight is the proportion of instances of each class. This metric
gives more importance to majority classes.

N
Flweighted = sz - F

i=1
where w; is the proportion of examples in class i:

Number of examples in class 4
w; =

Total number of examples
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« F.5 Classwise Expected Calibration Error (ECE)

Classwise Expected Calibration Error (ECE) is a metric that evaluates the calibration of pre-
dicted probabilities for each class individually in a multi-class classification setting. Calibration refers to
the alignment between the predicted probabilities and the actual outcome frequencies. A well-calibrated
model ensures that, for each class, the predicted probability reflects the true likelihood of that class
being the correct outcome.

For each class ¢, the Classwise ECE is defined as:

k. m
OB = £ 33 100l i
classwise — k ] |y1] pZJ|
i=1j5=1

%

where:

— k: Number of classes. Represents the total distinct categories the model can predict.

— m: Number of bins. The range of predicted probabilities is divided into m equal-width intervals
(bins) to aggregate predictions.

— B;;: Set of instances for class ¢ in bin j. This is the subset of samples belonging to class 4
whose predicted probability for that class falls into bin j.

n;: Total number of instances for class 7. It is the total count of samples belonging to class
i across all bins.

— yi;: True frequency of class ¢ in bin j. Calculated as the ratio of correctly predicted instances
of class 7 in bin j to the total number of instances of class ¢ in that bin.

— pij: Average predicted probability for class ¢ in bin j. It is the mean of the predicted
probabilities for class ¢ for all instances in bin j.

The Classwise ECE provides a granular view of the model’s calibration performance for each class.
By computing the ECE separately for each class and then averaging, it accounts for potential class
imbalances and ensures that the calibration assessment is not dominated by the majority classes. A
lower Classwise ECE indicates better calibration, meaning the predicted probabilities closely match the
observed frequencies. Conversely, a higher ECE suggests discrepancies between predictions and actual
outcomes, signaling potential overconfidence or underconfidence in the model’s predictions for specific
classes.

« F.6 Log Loss

Log Loss evaluates the accuracy of probability estimates by penalizing false classifications. It is defined
as:

N C
1
Log Loss = N ; ; Yi,c 10g(pi,c)

where:

— N: Number of samples
— C: Number of classes
— y;: Binary indicator (0 or 1) if class label ¢ is the correct classification for sample ¢

— pi,c: Predicted probability for class c of sample %
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« F.7 Mean Squared Error (MSE)

Mean Squared Error (MSE) measures the average squared difference between predicted probabilities
and actual outcomes. For class i, it is defined as:

N

1
MSE; = N Z(pj,i —v5.)°

j=1
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Appendix G

Ranking Features

e Elo Score

R;‘:RA—FKX(SA—EA)

1
T 1+ 10Bs—Ra—Haeavantage) /400—C

Eq

Where:

R4: Current Elo rating of Team A. The initial value for R used is 1500.
R’y: Updated Elo rating of Team A after a match.

K: Development coefficient. It determines the sensitivity of Elo rating adjustments based on
match outcomes, with a value of 25 chosen to balance responsiveness and stability, ensuring ratings
accurately reflect team performance without excessive volatility.

S4: Actual score for Team A in the match (1 for win, 0.5 for draw, 0 for loss).
E 4: Expected score for Team A.
Rp: Current Elo rating of Team B.

Hgdvantage: Home Advantage constant. It accounts for the inherent benefits of playing at home,
such as supporter support and familiarity with the venue, with a value of 100 selected to represent
a significant yet realistic home-field advantage based on historical performance data.

C: Corrective constant. It fine-tunes the expected score calculation by slightly adjusting the
probability distribution, using a value of 0 to keep things simple.

e Glicko-2 Score

_R-1500 . RD
F=1mmrs 7 1m3mms
1
9(¢;) = .
B o 1
(s 122 93) = T e=ateont=m)
-1
k
v=|Y_ 9(¢;)*E(u, 1, 6;)(1 = E(p, i, ¢;))
j=1
k
§=v-Yg(d)(s; — B, 1y, ;)
=1
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e®(62 — ¢ —v—e%)  x—1In(o?)
2(¢% + v + e*)? - 72

o = T+ 7
/ 1 1 -1/2
¢ =(5=+3)

k
W=+ Y g(65)(s; — Elps s ;)

j=1
R =173.7178 - i/ + 1500
RD' =173.7178 - ¢/

Solve f(x) =

=0 pour o

Where:

— R: Current rating.

— RD: Current rating deviation.

— p: Transformed rating.

— ¢: Transformed rating deviation.

— k: Number of opponents.

— ¢;: Rating deviation of opponent j.

— E(u, 115, ¢5): Expected score against opponent j.

— s;: Actual score against opponent j (1 for win, 0.5 for draw, 0 for loss).
— o Current volatility before update.

— 7: System constant that constrains the change in volatility. It affects how quickly the volatility
can change. The default is 0.5.

— ¢’: Updated volatility after solving the volatility update equation.
— ¢*: Intermediate rating deviation.

— u': Updated rating.

— R': Updated rating.

— RD’: Updated rating deviation.

Implementation Notes

— Numerical Solution for Volatility: The equation for updating volatility ¢’ does not have a
closed-form solution and is typically solved using iterative numerical methods such as the Newton-
Raphson method.

— Initialization: All players or teams start with an initial rating (e.g., 1500), an initial rating
deviation (e.g., 350), and an initial volatility (e.g., 0.06).

— Handling Multiple Opponents: The summations in the formulas account for multiple oppo-
nents in a rating period.

e TrueSkill

2 2 2 2
¢ = 25 + Owinner + Oloser

T = Hwinner — Mloser

_ oz —¢
U($,€) = qD(T—E)

w(z,€) = v(x,€) (v(z,€) + x —€)
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2
i loser
Oloser Hwinner — Hlose
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C
on Hwi —
2 2 winner winner oser
Owinner € Owinner * |:1 - 2 tw ( c a6>:|
2 2 o Howi —
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Where:

— lwinner, Mloser: Mean (skill) values of the winner and loser, respectively.

— Owinner, Oloser: Standard deviations (uncertainty) of the winner and loser, respectively.
— (: Dynamic factor, (default: 25.0/6).

— ¢(z): The probability density function (PDF) of the standard normal distribution.

— ®(x): The cumulative distribution function (CDF) of the standard normal distribution.

— e: Draw margin, often calculated based on the draw probability (default: e = 0.1).

TrueSkill updates both the mean and uncertainty of a team’s skill after each match. This dual update
mechanism allows TrueSkill to not only track the estimated skill level but also the confidence in that

estimate, providing a more dynamic and responsive ranking system. The initial value for y = 25.0 and

= % are used.

e Average Goals Scored per Season

N.
1 N

AvgGoals; = N Z Gij
1 ]:1

Where:

— N;: Number of matches played by Team ¢ in the season.

— Gj;: Number of goals scored by Team ¢ in match j.
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Appendix H

All Feature Descriptions

H.1 Team Ratings and Statistics

e home_attack: Attack rating of the home team.

e away_attack: Attack rating of the away team.

e home_club_worth: Total club worth of the home team.

e away_club_worth: Total club worth of the away team.

e home_defence: Defence rating of the home team.

e away_defence: Defence rating of the away team.

e home_defence_domestic_prestige: Domestic prestige rating for the home team’s defence.
e away_defence_domestic_prestige: Domestic prestige rating for the away team’s defence.
e home_midfield: Midfield rating of the home team.

e away_midfield: Midfield rating of the away team.

e home_overall: Overall rating of the home team.

e away_overall: Overall rating of the away team.

e home_players: Number of players in the home team.

e away_players: Number of players in the away team.

e home_starting_xi_average_age: Average age of the starting eleven for the home team.

e away _starting xi_average_age: Average age of the starting eleven for the away team.

e home_team_goals_season_to_date_before_match: Total goals scored by the home team up to this
point in the season.

e away_team_goals_season_to_date_before_match: Total goals scored by the away team up to this
point in the season.

e home_team_number_of_match_played: Number of matches played by the home team in the season.
e away_team_number_of match_played: Number of matches played by the away team in the season.
e home_transfer_budget: Transfer budget of the home team.

e away_transfer_budget: Transfer budget of the away team.

e home_whole_team_average_age: Average age of the entire home team.

e away_whole_team_average_age: Average age of the entire away team.
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H.2 League Information

home_league ESP-La Liga: Indicator if the home team plays in La Liga.

away _league_ESP-La Liga: Indicator if the away team plays in La Liga.
home_league_ENG-Premier League: Indicator if the home team plays in the Premier League.
away _league_ENG-Premier League: Indicator if the away team plays in the Premier League.
home_league ITA-Serie A: Indicator if the home team plays in Serie A.

away _league _ITA-Serie A: Indicator if the away team plays in Serie A.
home_league_GER-Bundesliga: Indicator if the home team plays in the Bundesliga.
away_league_GER-Bundesliga: Indicator if the away team plays in the Bundesliga.
home_league_ FRA-Ligue 1: Indicator if the home team plays in Ligue 1.

away _league_FR A-Ligue 1: Indicator if the away team plays in Ligue 1.

home_league INT: Indicator if the home team plays in an international league.

away _league INT: Indicator if the away team plays in an international league.

H.3 Prestige Ratings

home_international _prestige: International prestige rating for the home team.

away _international_prestige: International prestige rating for the away team.

H.4 Elo, Glicko-2 and Trueskill Ratings

elo_home_before: Elo rating of the home team before the match.

elo_away _before: Elo rating of the away team before the match.

glicko2_home_before: Glicko-2 rating for the home team before the match.
glicko2_away_before: Glicko-2 rating for the away team before the match.
glicko2_rd_home_before: Glicko-2 rating deviation for the home team before the match.
glicko2_rd_away _before: Glicko-2 rating deviation for the away team before the match.
glicko2_vol_home_before: Glicko-2 volatility for the home team before the match.
glicko2_vol_away _before: Glicko-2 volatility for the away team before the match.
trueskill_ home_before: TrueSkill rating for the home team before the match.

trueskill away_before: TrueSkill rating for the away team before the match.
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H.5 Build-up and Passing Styles

home_build_up_passing_Mixed: Mixed passing buildup style for the home team.
away _build_up_passing_Mixed: Mixed passing buildup style for the away team.
home_build_up_passing_Short: Short passing buildup style for the home team.
away _build_up_passing_Short: Short passing buildup style for the away team.
home_build_up_positioning_Organised: Organized buildup play for the home team.
away _build_up_positioning_Organised: Organized buildup play for the away team.
home_build_up_speed_Fast: Fast buildup play for the home team.

away _build_up_speed_Fast: Fast buildup play for the away team.
home_build_up_speed_Slow: Slow buildup play for the home team.

away _build_up_speed_Slow: Slow buildup play for the away team.

H.6 Chance Creation and Shooting Styles

home_chance_creation_crossing_Lots: High volume crossing chance creation for the home team.
away_chance_creation_crossing_Lots: High volume crossing chance creation for the away team.
home_chance_creation_crossing_Normal: Normal crossing chance creation for the home team.
away_chance_creation_crossing_Normal: Normal crossing chance creation for the away team.
home_chance_creation_passing_Risky: Risky passing for chance creation by the home team.
away_chance_creation_passing_Risky: Risky passing for chance creation by the away team.
home_chance_creation_passing_Safe: Safe passing for chance creation by the home team.

away _chance_creation_passing_Safe: Safe passing for chance creation by the away team.
home_chance_creation_positioning_Organised: Organized chance creation for the home team.
away _chance_creation_positioning Organised: Organized chance creation for the away team.
home_chance_creation_shooting_Lots: High volume shooting chance creation for the home team.
away _chance_creation_shooting_Lots: High volume shooting chance creation for the away team.
home_chance_creation_shooting Normal: Normal shooting chance creation for the home team.

away _chance_creation_shooting Normal: Normal shooting chance creation for the away team.

H.7 Defensive Strategies

home_defence_aggression_Double: Double marking defensive aggression for the home team.
away _defence_aggression_Double: Double marking defensive aggression for the away team.
home_defence_aggression_Press: Pressing defensive aggression for the home team.

away _defence_aggression_Press: Pressing defensive aggression for the away team.

home_defence_defender_line_Offside_trap: Use of offside trap in the home team’s defensive line.
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away _defence_defender_line_Offside_trap: Use of offside trap in the away team’s defensive line.
home_defence_pressure_High: High pressure defensive strategy for the home team.

away _defence_pressure_High: High pressure defensive strategy for the away team.
home_defence_pressure_Medium: Medium pressure defensive strategy for the home team.
away _defence_pressure_Medium: Medium pressure defensive strategy for the away team.
home_defence_team_width_Normal: Normal defensive width for the home team.

away _defence_team_width_Normal: Normal defensive width for the away team.
home_defence_team_width_Wide: Wide defensive width for the home team.

away _defence_team_width_Wide: Wide defensive width for the away team.
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Appendix I

Feature Importance

away_defence_domestic_prestige
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Figure 1.1: Coefficients of the Logistic Regression Model for Draw class
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Figure 1.2: Coefficients of the Logistic Regression Model for Away win class
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Appendix J

Appendix: Bookmakers Used

During the online testing phase, odds were retrieved from a diverse pool of 21 bookmakers, ensuring a wide
range of market conditions and betting options. The best odds for each match were selected from this pool
to optimize returns. Table J.1 provides the list of bookmakers used in the study.

Table J.1: List of Bookmakers Used

Bookmaker Bookmaker
1xBet NordicBet
888Sport Pinnacle
BetClic Suprabets
Bet AnySports Tipico
Betfair Exchange EU | Unibet EU
BetOnline.ag William Hill
Betsson BetVictor
Coolbet GTBets
Everygame LiveScoreBet EU
Marathonbet Matchbook
MyBookie.ag
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