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1 Introduction

Recent advancements in text-to-image generation
models, such as Latent Diffusion Models (LDMs),
have achieved impressive results in generating high-
quality, photorealistic, and diverse images condi-
tioned on textual prompts. However, a significant
challenge remains: ensuring consistent alignment be-
tween the content of user-specified text prompts and
the images generated by these models. This prob-
lem becomes particularly pronounced when generat-
ing images involving multiple object categories, espe-
cially configurations uncommon in real-world scenar-
ios. Standard LDMs often fail to adequately com-
pose multiple objects, leading to missing or poorly
arranged instances in the generated images.
TokenCompose[3] addresses this limitation by in-
troducing token-wise consistency terms during the
finetuning stage of Stable Diffusion. These terms
leverage pretrained image understanding models,
such as Segment Anything (SAM), to provide token-
level supervision. The proposed method enhances
the model’s ability to accurately compose multiple
object categories in generated images, significantly
improving both object accuracy and photorealism.

2 Latent Diffusion Models &

proposed improvements

Latent Diffusion Models operate by encoding an im-
age into a latent space using a variational autoen-
coder (VAE). During training, random noise is added
to the latent representation, and the denoising func-
tion, parameterized by a U-Net architecture, is opti-
mized to predict and remove the noise. To condition
image generation on textual prompts, text embed-
dings are injected into the U-Net layers via cross-
attention. The training process involves computing
the loss between the predicted noise and the ground
truth noise.

(1)

Where € is the random noise, €y is a neurall net-
work, z; = E(x;) is the encoded image by the VAE
and 7p(y) is the texte encoded through CLIP[2].
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Despite these advances, existing LDMs optimize
only for denoising, which fails to explicitly align text
tokens with image regions. This limitation results in
poor token-level understanding and suboptimal com-
position of multiple objects during inference.

2.1 Token-Level
(Etoken)

To improve token-level grounding, TokenCompose in-
troduces a token-level attention loss, Lioken, Which
supervises the cross-attention activations between
text tokens and corresponding regions in the image.
The method uses binary segmentation maps M; for
each text token i, generated automatically by pre-
trained segmentation models.

The token-level attention loss encourages activa-
tions in the cross-attention maps to focus on the tar-
get regions defined by B;, normalized by the total
activations. This approach ensures that each token’s
embedding aligns with its corresponding region in the
image. The loss function for Lioken is defined as:
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where A; ,) represents the scalar attention acti-
vation at a spatial location u and B; are predicted
spatial regions B; = u € M;|u = 1.

2.2 Pixel-Level Attention Loss (Lpixel)

While Lioken improves token-level alignment, it may
lead to overly concentrated activations within cer-
tain subregions of the target areas. To address this
issue, TokenCompose introduces a pixel-level atten-
tion loss, Lpixel, which applies a binary cross-entropy
objective to constrain activations at the pixel level.
This ensures that activations are distributed appro-
priately across the target regions defined by the seg-
mentation maps.
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2.3 Loss for training

The combined optimization objective during training
is:
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where A and v are scaling factors to balance the
contributions of the token- and pixel-level losses.

2.4 Effects of token level supervision
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Figure 1: Generated images for ”A cat and a wine
glass” prompt by Stable Diffusion and TokenCom-
pose

Here of attention maps for ‘cat’ and ‘wine glass’ to-
kens for an image generated by Stable Diffusion and
TokenCompose in our tests. The attention is much
more isolated on the objects for TokenCompose, es-
pecially for the glass. In addition, attention is more
evenly distributed across the object thanks to Pixel
level loss.

3 Multi-Category Instance
Composition Evaluation
Methodology

We evaluated the compositional capabilities of the
models using the MULTIGEN benchmark, which ex-
amines the generation of multiple object categories
within a single image based on textual prompts.
MULTIGEN poses a challenging task by randomly
sampling 5 distinct categories (e.g., ”A, B, C, D, and
E”) and formatting them into a sentence (e.g., ”A
photo of A, B, C, D, and E”). These prompts are
used as input conditions for text-to-image diffusion
models to generate corresponding images.

To evaluate performance, we employ a robust
open-vocabulary detector to identify the presence
of the specified categories in the generated images.
In the original paper, for each dataset (COCO and

ADE20K), 1,000 prompts are sampled to generate 10
images per prompt, resulting in a total of 10,000 gen-
erated images per dataset. Then, the success rate of
generating 2 to 5 specified categories out of 5 (MG2-
5) for each round as well as the standard deviation
across the 10 rounds is calculated. In our implemen-
tation, we only randomly chose 50 prompts and gen-
erated 5 images per prompts to limite computational
time.

4 Proposed CLIP Fine-Tuning
Enhancement

In the original framework, the text encoder utilized
in the model is derived from CLIP, with its weights
frozen during training. We hypothesized that fine-
tuning CLIP for the task could yield improved re-
sults, particularly for generating images containing
multiple object categories in varied spatial arrange-
ments.

CLIP was originally trained on high-quality im-
ages, where objects were often centrally positioned
and clearly depicted. However, this central bias could
limit its ability to represent objects in complex com-
positions. To address this, we leveraged the COCO
dataset and its segmentation masks to create a fine-
tuning dataset for CLIP. By extracting object in-
stances from images, including cases where objects
appear in non-central positions or are occluded by
others, we introduced variability to the training data.

Figure 2: Bounding boxes extracted from segmenta-
tion maps in Coco dataset

The enhanced data set was then used to fine-tune
CLIP using a contrastive learning objectivel[l].

Contrastive learning involves aligning semantically
similar pairs (e.g., a textual description of an object
and its corresponding image segment) while pushing
apart embeddings of dissimilar pairs. The InfoNCE



loss, employed for this purpose, is defined as:
exp (sim(z;, 2;7)/7)
sy exp(sim(zi, 2) /7).
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where z; and z; represent the embeddings of a posi-
tive pair (e.g., a segment and its corresponding tex-
tual token), sim(-,-) is a similarity function (e.g., co-
sine similarity), and 7 is a temperature parameter
controlling the distribution sharpness.

This fine-tuning process aims to bring the embed-
dings of object representations closer to their corre-
sponding extracted images, while ensuring that un-
related embeddings remain distant.

LinfoNCE =

5 Results & Conclusion

5.1 Results

After finetuning, we eveluated the TokenCompose
model based on Stable Diffusion 1.4 with the fine-
tuned CLIP model as a text encoder. The MULTI-
GEN benchmark has been set with 50 prompts x 5
images for computational reasons.

Model MG, MGs; MGy MGs;
TC_SD14 93.500.77 74.00364 31.506.885 3.001.63
SD14 84.502.18 43.50562  9.50562  1.001.00
TC_SD14 + CLIP 94.502. 03 71.003.22 27.002.14 2.001.31
TC14 Original Paper 98.080'40 76.16104 28.810.95 3.280'48
SD14 Original Paper 90.721433 50.74959 11.680.45 0.880'21
Table 1: MULTIGEN Benchmark Results: Success

rates (%) and standard deviations for generating
multiple categories. The results from the original pa-
per are included for comparison.

As you can see, our fine tuning downgrade perfor-
mances, especially from for 4 and 5 objects compo-
sition generation (M G4 andMG5) and performance
remain quite similar for 2 and 3 objects composition.
Unfortunately, the fine tuning is not an improvement.

Figure 3: Generated images and attention maps.
Prompts: ”A zebra next to a traffic light” and ”7A
cat and a wine glass”.

Attention maps are also degraded, with attention
less well distributed on the objects to be generated.

TC SD14

TC_SD14 + CLIP

A toilet in front of the
ocean, with grass and
dandelions growing
around it.

A remote in front of Abed nextto a
atv traffic light

An astronaut riding
an elephant in the
Milky Way, along
with books and
pizzas.

Figure 4: Examples of generated images with our fine
tuned model and TokenCompose

5.2 Conclusion

Our experiments confirm the original article: adding
loss during training focus attention activations to
specific areas of the image, making it easier to com-
pose images with several objects, as demonstrated by
the MULTIGEN benchmark.

Unfortunately, our proposition does not improve
performance and several reasons could explain it.
Some of the labels on the masks are not precise
enough and some of the bounding boxes are some-
times badly positioned which can be detrimental to
training. Unfortunately, we believe that this finetun-
ing donwgraded CLIP. In addition, we were unable
to re-train the entire model (Stable Diffusion) due to
hardware constraints and TokenCompose was trained
on standard CLIP. One way of improving this is to
re-train the model with our version of CLIP to see
the difference.
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