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1 Introduction

Neural networks approximate p(y | x,θ), but MAP estimates ignore uncertainty, causing overconfidence, espe-
cially on out of distribution (OOD) data, in regions far from training points [1]. Recent work [2] addresses this
with temperature scaling and Laplace approximations, improving confidence calibration.

We implement and extend [2], applying these methods to binary and multiclass classification. Our con-
tributions include (1) evaluating alternative activations like Tanh and (2) deriving a closed-form multiclass
correction. This strengthens the analysis of Laplace approximations in handling uncertainty and reducing
overconfidence on OOD inputs.

2 Bayesian Neural Networks and the Laplace Approximation

2.1 Bayesian Neural Networks

A standard neural network learns a single set of parameters θ by maximizing the log-likelihood (or posterior in
the case of MAP estimation) : θMAP = argmaxθ log p(θ | D), resulting in deterministic predictions, D beeing
the training dataset. This approach ignores uncertainty over θ, often leading to overconfident predictions,
particularly on out-of-distribution data. In contrast, a Bayesian neural network (BNN) treats θ as a
distribution rather than a fixed point estimate, capturing model uncertainty by integrating over possible values
of θ.

For binary classification, the posterior predictive distribution (assumed to be Bernoulli) is given by
integrating over the parameter uncertainty, where σ(·) is the sigmoid function and fθ(x) is the network’s logit
output. For multiclass classification, we generalize using softmax(.).

pbinary(y = 1 | x,D) =

∫
σ(fθ(x))p(θ | D)dθ, pmulticlass(y | x,D) =

∫
softmax(fθ(x))p(θ | D)dθ.

2.2 Laplace approximation

Since exact Bayesian inference is intractable, the Laplace approximation models the posterior p(θ | D) as a
Gaussian centered at θMAP with covariance Σ = (−∇2 log p(θ | D)|θMAP

)−1.

p(θ | D) ≈ N (θ | θMAP,Σ)

Laplace comes from approximating the log-posterior via a second-order Taylor expansion around θMAP, we
get log p(θ | D) ≈ log p(θMAP | D) + 1

2 (θ − θMAP)
TH(θ − θMAP), where H = ∇2 log p(θ | D)

∣∣
θMAP

. By Bayes’

rule, log p(θ | D) ∝ log p(D | θ) + log p(θ), where log p(D | θ) =
∑N

i=1 log p(yi | xi, θ).
Assuming a Gaussian prior p(θ) = N (0, σ2

0I) gives log p(θ) = − 1
2σ2

0
∥θ∥2, leading to the Hessian H =

∇2 log p(D | θ)− 1
σ2
0
I, where the prior regularizes the curvature of the log-likelihood.

The Laplace approximation thus enables uncertainty-aware predictions while remaining computationally
efficient.

3 Closed-form Approximation and asymptotic results

3.1 Binary Laplace Approximation

3.1.1 Close form

Approximating via a first-order Taylor expansion around θMAP, we set fθ(x) ≈ fθMAP(x) + d⊤(θ − θMAP)
with d = ∇θfθ(x)|θMAP . Using a Laplace approximation, where θ | x,D ∼ N (θMAP,Σ), the logits follow
p(fθ(x) | x,D) ≈ N

(
fθMAP

(x), d⊤Σd
)
.
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Applying a probit approximation [3], we get:

p(y = 1 | x,D) ≈ σ

 fθMAP
(x)√

1 + π
8d

⊤Σd

 .

This tempers overconfidence by incorporating parameter uncertainty.
To improve efficiency, a last-layer Laplace approximation applies Bayesian inference only to the final

layer’s weights wL, treating earlier layers as a deterministic feature extractor ϕ(x):

p(y = 1 | x,D) ≈
∫

σ(wL⊤
ϕ(x))N (wL | wL

MAP,Σ)dwL.

This balances complexity and uncertainty estimation, whereas a full-layer Laplace approximation mod-
els all parameters θ with a Gaussian posterior, improving uncertainty estimates at the cost of inverting the full
Hessian.

3.1.2 Asymptotic Behavior

Hein et al. [1] showed that such networks yield arbitrarily high confidence predictions for inputs far from the
training data. Specifically, for an input x scaled by a large factor δ, the network’s confidence approaches one
as δ → ∞:

lim
δ→∞

σ(fMAP(δx)) = 1.

Now, as δ → ∞, fθMAP
(δx) grows unbounded, but the denominator scales accordingly due to the covariance

structure. This ensures that the confidence remains bounded:

lim
δ→∞

σ(|z(δx)|) ≤ σ

(
∥u∥√

smin(J)
π
8λmin(Σ)

)
.

Where δ is a scaling factor for simulating out-of-distribution inputs, u ∈ Rn is a vector depending only on
µ = θMAP, J = ∂u

∂θ ∈ Rn×p is its Jacobian, smin is the smallest singular value, and λmin(Σ) is the smallest
eigenvalue of the weight covariance matrix.

Thus, even a simple last-layer Laplace approximation prevents extreme confidence on out-of-distribution
inputs, making the network more robust while preserving accuracy on in-distribution data.

3.2 Multiclass Laplace Approximation

3.2.1 Monte-carlo approximation

For multiclass classification the network outputs a vector fθ(x) ∈ Rk, which is converted into probabilities
using the softmax function and integrating over p(θ | D) gives the Bayesian predictive distribution. Unlike
the binary case, no closed-form solution exists for this integral. Previous works typically rely on Monte Carlo
(MC) sampling, drawing parameter samples from the Gaussian posterior and averaging softmax outputs:

p(y = i | x,D) ≈ 1

S

S∑
s=1

softmax(fθ(s)(x))i, θ(s) ∼ N (µ,Σ).

3.2.2 Our Contribution: A Closed-Form Approximation for the Multiclass Case

Inspired by the probit correction in the binary case, we extend this approach to the softmax function. Using
a first-order Taylor expansion:

fθ(x) ≈ fθMAP(x) + J(x)(θ − θMAP),

where J(x) is the Jacobian of fθ(x) at θMAP, we obtain:

fθ(x) ∼ N
(
fθMAP(x), V (x)

)
,

with covariance V (x) = J(x)ΣJ(x)T . By analogy with the binary case, we propose the following logit
correction:

zi(x) :=
[fθMAP(x)]i√
1 + π

8 [V (x)]ii
,
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which accounts for uncertainty by scaling down logits in proportion to their variance. This leads to the
following closed-form predictive approximation:

p(y = i | x,D) ≈ exp(zi(x))∑k
j=1 exp(zj(x))

.

This formulation provides a computationally efficient alternative to MC sampling while maintaining well-
calibrated uncertainty estimates.

3.2.3 Asymptotic Behavior and Robustness

To verify its effectiveness, we analyze the approximation for large inputs xδ = δx. For ReLU networks, logits
and covariance scale as:

fθMAP(xδ) ≈ δu(x), V (xδ) ≈ δ2J(x)ΣJ(x)T .

Thus, the corrected logits behave as:

zi(xδ) ≈
δui(x)

δ
√

π
8 [V (x)]ii

=
ui(x)√
π
8 [V (x)]ii

.

Since zi(xδ) remains finite, the predictive probabilities converge to a well-calibrated distribution rather than
extreme confidence. This confirms that our proposed correction effectively prevents overconfident predictions
in high-uncertainty regions.

4 Experiments

We evaluate our uncertainty estimation methods on two synthetic datasets: the binary classification task on the
Two Moons dataset and the multiclass classification task on synthetic Gaussian clusters. For both settings, we
compare the standard MAP estimator with several uncertainty-aware techniques: temperature scaling, last-layer
Laplace approximation (LLLA), and full Laplace approximation (FLA). For multiclass classification, we further
compare predictions obtained via Monte Carlo (MC) sampling and our proposed closed-form approximation.
We also experiment replacing ReLU using Tanh, to see if the results still hold.

4.1 Binary Classification Experiments on Two Moons

For binary classification, we use a simple neural network architecture with a two-layer feature extractor and
a linear classifier. The network is trained using stochastic gradient descent for 15000 epochs. We experiment
with different activation functions (e.g., ReLU vs. Tanh) to assess their impact on uncertainty calibration.

Optimization of Prior Variance. We optimize the standard deviation of the Gaussian prior on the weights
(denoted by σ0) via a grid search over log-variance values. In each iteration, the negative log-likelihood is com-
puted both on in-distribution validation data and on a set of out-of-distribution (OOD) inputs. This combined
loss drives the selection of the optimal σ0, ensuring that both in-domain accuracy and OOD uncertainty are
balanced. Let D̂ := {(x̂i, t̂i)}mi=1 be a validation set and D̃ := {x̃i}mi=1 be an out-of-distribution dataset. We
then pick the optimal σ2

0 by solving the following one-parameter optimization problem:

argmin
σ2
0

[
− 1

m

m∑
i=1

log p
(
y = t̂i | x̂i, D

)
+ λ log p

(
y = 0.5 | x̃i, D

)]
,

where λ ∈ [0, 1] controls the trade-off between both terms. We used λ = 1.

Temperature Scaling. In addition, temperature scaling is applied post-training to calibrate the logits. The
temperature parameter T is optimized using an LBFGS optimizer, minimizing the binary cross-entropy loss on
a held-out validation set.

Results. Figure 1 presents the predictive probability maps and calibration plots for the Two Moons dataset.
The temperature scaling just temperate the confidence around the decision boundaries. Both LLLA and FLA
significantly reduce overconfidence compared to the MAP estimator. The choice of activation function also
influences the final calibration: networks with Tanh activations tend to yield smoother confidence estimates
than those with ReLU. Hence, the results of reducing overconfidence seems to hold in this special binary simple
case for smother activation function like Tanh, even improving the smoothness of the confidence regions.
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(a) MAP ReLU (b) Temp scaling ReLU (c) Full Laplace ReLU (d) LLLA ReLU

(e) MAP Tanh (f) Temp scaling Tanh (g) Full Laplace Tanh (h) LLLA Tanh

Figure 1: Comparison of different approaches on a binary classification problem using ReLU (top) and Tanh
(bottom). (a) MAP estimate without Bayesian inference, (b) Temperature scaling without Bayesian inference,
(c) Full-layer Laplace approximation, and (d) Last-layer Laplace approximation.

4.2 Multiclass Classification Experiments on Gaussian Clusters

For multiclass classification, we design a network that includes a two-layer feature extractor followed by a
linear classifier that outputs logits for four classes. The network is optimized over 15000 epochs using a similar
stochastic gradient descent scheme.

Methods and Optimization. We compare MAP (deterministic baseline), Temperature Scaling (logit cali-
bration), and Laplace approximations (LLLA, FLA) to capture parameter uncertainty. Predictions for LLLA
and FLA use Monte Carlo sampling or a closed-form logit correction. For multiclass models, we optimize the
prior variance σ0 and tune the temperature parameter on the validation set to minimize cross-entropy loss.

Results and Analysis. Figure 2 displays the confidence curves for the multiclass experiments. Overall,
the MAP model tends to produce overconfident predictions, especially for inputs far from the training data.
Temperature scaling increases a bit performance compared to MAP. Both LLLA and FLA considerably mitigate
this issue, especially in the LLA case where we can really see islands of confidence around the training data.
FLA does not perform as well having confidence more centered around certain classes. Notably, the predictions
obtained via the closed-form approximation improves over temps scaling, producing smother confidence regions
but do not performing as well as LLLA, probably due to eavy approximations. Finally, Tanh in the Monte
Carlo setting show promising results but does not perform as good as LLLA (MC) using ReLU falling to really
create true islands of confidence around the training data.

Computation Times. Table 1 summarizes the approximate computation times for each approach depicted
in Figure 2. We see that the MAP baseline is fastest, while the full-layer Laplace scales poorly for larger
networks.

Method Computation Time
MAP / Temp 0.1s
Last-Layer Laplace (MC) 6s
Full-Layer Laplace (MC) 1m30s

Table 1: Computation times for each multiclass method depicted in Figure 2.
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(a) MAP ReLU (b) Temp Scaling ReLU (c) LLLA (CF) ReLU (d) LLLA (MC) ReLU

(e) FLA (CF) ReLU (f) FLA (MC) ReLU (g) LLLA (MC) Tanh (h) FLA (MC) Tanh

Figure 2: Comparison of different Bayesian approaches for a 4-class classification problem. (a) MAP estimate
without Bayesian inference ReLU, (b) Temperature scaling ReLU, (c-d) Last-Layer Laplace (Closed-Form vs.
Monte Carlo) ReLU, (e-f) Full-Layer Laplace (Closed-Form vs. Monte Carlo) ReLU, (g-h) Last-Layer Laplace
vs. Full-Layer Laplace Tanh.

5 Limitations

The Laplace approximation faces key limitations, particularly due to the Hessian H not always being positive
definite, stemming from the non-convexity of the loss function. This makes the posterior covariance Σ =
(−H)−1 ill-defined, especially in the full Laplace approximation (FLA).

A common fix is adding a small regularization term, λI, but choosing λ is non-trivial, and diagonal approx-
imations degrade confidence estimates. In the closed-form methods, dTΣd can become negative in some part
of the input space, preventing computation. The prior variance σ2

0 acts as implicit regularization but is difficult
to optimize effectively. These issues worsen for complex tasks, where loss landscapes are more intricate, making
Hessian-based uncertainty estimation challenging.

6 Conclusion

We mitigated overconfidence in ReLU networks using Laplace approximations, extending prior work with Tanh
activations and a closed-form multiclass correction. Experiments confirmed Last-Layer Laplace effectively
calibrates uncertainty with minimal overhead. However, Hessian instabilities remain. Future work could use
Cholesky-based regularization, refine priors and scalable approximations for improved robustness.
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